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Chapter 1

Introduction

The topic of this work is developing generative models that can create pieces of music au-
tonomously. There are two basic ways in which music can be generated, although the line between
them is not always clear: as a concrete perceptual signal (an audio clip) or in a symbolic represen-
tational format, which means producing a musical score instead of an audio file. In recent years
there have been successful efforts to generate music in the audio domain (A. v. d. Oord et al., 2016;
Dieleman, A. v. d. Oord, and Simonyan, 2018; Vasquez and Lewis, 2019; Dhariwal et al., 2020).
Nevertheless, there are important advantages in modelling music symbolically. Such a score can
be performed by human musicians as well as by a midi sequencer. Dealing with symbolic music is
certainly closer to the way composers go about their work. The general ability to recognize and
construct relations between symbols is just as important for many tasks beyond music and is one
of the stepping stones on the path to general artificial reasoning (see for example Garcez et al.,
2015).

In chapter 2, I present the ideas of generative modelling using some historical examples. When
designing a generative model, many factors have to be weighed against each other. One of the most
fundamental aspects is how rigid or flexible the exact form of representation is. Since the success
of large neural networks and deep learning, it is possible to use extremely general and powerful
representations without overwhelming the probabilistic model. This means that by training with
large amounts of data, complex and subtle characteristics of music can be captured automatically.
A command-based representational format inspired by the MIDI protocol has enormous expressive
power and can still be rendered as a one-dimensional sequence, which is important for our models.

The main part of this work is divided into chapters three and four. Chapter 3 is devoted to the
Transformer architecture (Vaswani et al., 2017), a kind of neural network that has revolutionized
the field of natural language processing in recent years. I examine the individual components of the
architecture, especially the attention mechanism, for their function and behaviour. Transformers
have already been successfully used to create symbolic music in an autoregressive way (Huang,
Vaswani, et al., 2018; Payne, 2019). That is, sequences are generated one item at a time. Besides
new visualization methods that allow to understand the way the model builds up an understanding
of the input sequences, the main technical innovation that brings a significant improvement in
performance is an extension of the input representation with dynamic features. These can be
calculated deterministically from the command-based representation and provide each item in the
sequence with additional context information that stabilizes the model. The four-part chorales
by Johann Sebastian Bach serve as a field of experimentation. But it is also shown that the same
principles work for the much more complex compositions of the MAESTRO dataset (Hawthorne
et al., 2018).

In chapter 4, I investigate a new approach that allows to learn more abstract and lower-
resolution representations, and to convert them back into an understandable form. The sequences
of learned representations can then be created by a new latent generative model. This has several
potential advantages: The strictly linear (and maybe somewhat unmusical) modelling style of the
previous models is broken up. Complex temporal relationships can thus be more easily captured.
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In general, it is possible to generate longer coherent sequences because the learned representations
are more compact. It also increases the control we have over the generation process.

In order to train generative models for the learned representations without too many problems,
these must be sequences of discrete items. Learning discrete representations is, however, in some
ways at odds with the basic principle of differentiability, which is a prerequisite for the efficient
training of neural networks. Based on the work of A. v. d. Oord, Vinyals, et al., 2017, we
investigate several quantization methods that nevertheless allow an undisturbed gradient flow.
Learning discrete representations of symbolic music, which has not been done before in this form,
presents some challenges that will be explained in more detail. I propose a completely transformer-
based quantized auto-encoder architecture. It allows the discrete encoding and decoding of Bach
chorales as well as their unconditional generation. This approach, however, still has a lot of
potential for further development.

The experiments were programmed using the frameworks PyTorch (for creating and train-
ing the neural networks, Paszke et al., 2019) and mido (for processing the MIDI files, https://
github.com/mido). Audio clips of the presented examples are available online (vincentherrmann.
github.io/mami_thesis).
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Chapter 2

Background

The question “How does music work?” has occupied the minds of people since antiquity. It is not
not only asked in a practical, empirical or artistic sense—“How can we produce beautiful sounds?”
or “Which combinations of notes seems to convey suspense, which resolution?”. There is often
also a more fundamental, almost mathematical aspect—“What are the basic principles that give
beauty to music”, “Why do we perceive some combinations or configurations of sounds as music
and others not?”.

Trying to scientifically describe, explain and generate music might have been pursued since
the advent of science itself. In ancient Greece, Pythagoras saw the motion of the heavenly bodies
reflected in the pitches a string can produce (Calter, 1998). One can also argue that such efforts
were present from the very beginnings of the field of computer science. Ada Lovelace is sometimes
described as the first computer programmer in history. She was the associate of Charles Babbage,
inventor of the first universal computer, the so-called Analytical Engine, which he described in
1837 but was never actually realized in his lifetime. Lovelace explicitly mentions the possibility
of using computers to create “scientific pieces of music of any degree of complexity or extent”
(Lovelace, 1843). This has indeed been tried in myriads of ways and interest has by no means
faded away.

2.1 Generative models of music

Maybe one can frame these aspirations as the quest of finding generative models of music. In
the broadest sense, a statistical generative model captures the properties and regularities of some
musical data by either explicitly or implicitly representing the probability distribution

pMusic(x).

(cf. Bishop, 2006). Here, x is any potentially musical artefact. The function pMusic states, as it
were, how probable it is that a specific x is a piece of music. In principle, one can sample from
this distribution to generate a new piece of music. What exactly pMusic expresses depends of
course on the what exactly can be represented by x, and how these supposedly musical artefacts
are represented. If, for example, x can be any conceivable audio clip, the task of differentiating
in a robust and general way between music and noise (in our case any non-musical configuration
of sounds) is extremely challenging because the space of all possible audio clips is vast. On the
other hand, x could have a representational format so that it can only ever be music. It could,
for instance, simply state the opus number and the composer of a piece. Then the generative
model has nothing to do at all. All the work has been done on the representational side, by the
composers writing the music in the first place as well as by musicologists systematizing it and
making it accessible.

Further historic and theoretical reflections would certainly be fascinating. They are, however,
not the focus of this work. I will instead present a few historical milestones and highlight their
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Figure 2.1: Lookup table and some of the musical segments from Anleitung so viel Walzer man
will mit Würfeln zu componiren ohne musikalisch zu seyn oder Composition zu wissen (Mozart,
1790).

basic principles insofar as they will be relevant in the later chapters.

2.1.1 Musical Games of Dice

Some forms of what could be called autonomous composing systems date back to at least the
eighteenth century. In so-called Musikalische Würfelspiele, or musical games of dice, short seg-
ments of music were combined in an aleatoric fashion to give rise to new compositions. These
segments were usually crafted by a composer for the specific purpose of fitting together in all
possible configurations. Some Würfelspiele have been ascribed to Joseph Haydn and Wolfgang
Amadeus Mozart (Ratner, 1970).

For this kind of system, only the simplest probabilistic model is required—a die. In other
words, the distribution we are modelling is a basic uniform distribution:

p(xi) =
1

n

The notation p(xi) is short for p(Xi = x). Here, Xi is our random variable for the ith item in
a sequence. It can have n different values, where n is the number of possible values our random
variable X can have (i.e. the number of faces on the die). x denotes one specific item out of the
n choices. We see that the selection of one individual item does not depend on the other ones, or
formally that the items are conditionally independent, meaning that the joint distribution can be
factorized (L is the number of items in the sequence we want to generate):

p(x1,x2, ...,xL) = p(x1)p(x2)...p(xL) =
1

nL

This, of course, puts a major constraint on the kinds of musical segments that can be used. We can
see this from the fact that almost all usually occurring musical segments will not be compatible
if one just strings them together in a random order.

In Figure 2.1, we can see an excerpt from the Würfelspiel by Mozart that creates short waltzes
for piano. The columns show the allowed values of our random variable Xi at each step. The row
is picked by throwing two dice for every step.

It is possible, in principle, to construct elaborate such games that create large numbers of
diverse musical pieces, while still relying only on the most basic probabilistic generative model.
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This is because it relies purely on the representational structure of the data. With that, I mean
that most music, if it does not meet the extremely narrow requirements of having to fit in a certain
musical context, can and must not be represented at all. All the musical insight and knowledge
is contained in the data representation and none in the generative model.

2.1.2 Markov Chains and Emmy

The table in Figure 2.1 states the values that are allowed depending on the current index i in
the sequence. But it is probably more sensible in a musical setting to make the allowed values
dependent on the previous segment instead of the absolute position in the sequence. This requires
modelling the conditional distribution p(xi|xi�1). The columns in the table then would no longer
represent the position in the sequence but the value of the previous item.

Such a generative model is also called a Markov chain (Markov, 1971). To create new samples
from this model, we take the current value (or begin with a generic starting value) and use it
to pick the appropriate column. From this column, we sample the value of the next item which
then, in turn, determines the column for the item after that, and so on. This is an instance
of autoregressive generation, which means creating a sequence item for item where each item is
dependent on what has already been generated. It will remain a crucial concept for this work.

Instead of building a generative model from scratch by hand, it is possible and perhaps desir-
able to learn it from existing data—that indeed is the main topic of this work. To learn a Markov
chain, we construct a square matrix of zeros, with the number of rows and the number of columns
both being the number of distinct values the items in the dataset can have. The value of the
current item determines the row and the value of the previous item determines the column. We
go sequentially through the dataset and record every item in the matrix by adding the value 1 to
the corresponding cell. In the end, the columns of the matrix are normalized so that the sum of
each column is 1, giving us the conditional distributions p(xi|xi�1).

The conditioning is still only on the previous item. Because of this, only very short local
structures can be modelled. Of course, what can be modelled also depends on what exactly our
items are. An item could represent something very generic—for example a single note. Every note
will occur many times in the dataset, which means that detailed conditional distributions can be
learned. But dependence on just the previous note is not enough to capture anything musically
meaningful. On the other hand, if the items each represent, say, a whole bar of music then most
items will occur only once in the whole dataset. This leads to deterministic distributions, where
only one specific item can follow another. The model then can only replicate existing pieces (it
is overfitting on the training data). One has to think carefully about the level of detail, the
granularity and generality of the representations used for a Markov chain.

The composer David Cope extended the Markov chain approach for his Experiments in Musical
Intelligence (short Emmy) with remarkable results (Cope, 2001). Cope captures the conditional
dependencies of several hand-crafted properties of the items (such as tension or resolution at
multiple hierarchical levels or occurrences of motives). Additionally, he uses sophisticated rules
and pattern matching methods to counteract some of the limitations of Markov chains. As before,
one could say that here the important work is done mostly on the representational side.

2.1.3 A Generative Theory of Tonal Music

In linguistics, there have been efforts to find a generative grammar, or the general principles
that enable the comprehension and versatile use of language. This approach was prominently
represented by Noam Chomsky (Chomsky, 1965). Analogous to the generative grammar of lan-
guages, generative theories of music have been developed, most famously by the composer Fred
Lerdahl and the linguist Ray Jackendorff (“A generative theory of tonal music”, GTTM, Lerdahl
and Jackendoff, 1996).

It tries to formally describe how listeners understand, in a mostly unconscious way, the music
they are hearing. As the title suggests, the reach of this theory is limited to western classical
tonal music. Four important structures are specified, all of them hierarchical to the effect that

5



they consist of nested regions across a wide range of scale: The grouping structure expresses
segmentation into entities such as motive or phrase. The metrical structure discriminates strong
and weak beats. Time-span reduction uses the grouping and metrical structures to construct a
tree where at every level fewer representative elements (so-called “heads”) of the corresponding
segment are retained. The last structure, prolongation reduction, seeks to capture the varying
tension and stability of segments. The formation of these structures is governed by a multitude
of explicit rules.

Figure 2.2: Time-span tree of Oh Haupt voll Blut und Wunden according to GTTM, with metrical
and grouping structure depicted below the staff (taken from Lerdahl and Jackendoff, 1996).

These principles and rules give no direct explicit way of generating music. Rather, they allow
the examination and evaluation of a potentially musical artefact. If it fits well into the stipulated
framework it consequently is likely to be a piece of tonal music. Thus in a sense, this generative
theory is akin to a probabilistic generative model which states how well the given data fit into
the modelled distribution.

2.1.4 Deep Learning

If we go back to the Markov chain approach, it is natural to ask why we condition only on the
direct predecessor and not on more items from the preceding sequence. But in practice, we will
quickly encounter limits: We could condition on the two preceding items, p(xi|xi�1,xi�2). This
is called a second-order Markov chain and needs a three-dimensional table, which has n3 cells (n
being the number of values an item could have). Or if we model, in general, the whole sequence
as p(xL|x1,x1, ...,xL�1), the table will have nL cells. Such a table is virtually impossible to ever
be sufficiently filled, no matter the size of our dataset. This is an instance of the so-called curse of
dimensionality (Bellman, 1961), which refers to the fact that the number of states a distribution
has to cover grows exponentially with the size of dimensions (in our case the number of items in
a sequence). Extracting the statistical properties of our dataset by simply counting occurrences,
as it is usually done when learning Markov chains, will tell us that the exact sequences that are
in the dataset are the only ones allowed.
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The way out is not trying to create a giant lookup table but to use a learnable function
approximator for p. The input to this function is the sequence up to the current item and
the output is the probability distribution over the possible values for the next item. Such a
function can be learned using the maximum-likelihood method. This simply means that the
higher probability that the function assigns to the items in the dataset, given the context, the
better.

This is often formulated as a loss that should be minimized, known as negative log-likelihood
(NLL). It is the negative average of the log-probability of all items in the dataset:

LNLL = � 1

M

m=MX

m=1

l=LMX

l=1

1

LM

log p(xm

l
|xm

1 ,xm

2 , ...,xm

l�1)

Here M is the number of different pieces in the dataset and LM is the number of items in each
piece.

The principle of autoregressive modelling is a strategy for dealing with the curse of dimension-
ality as well since it allows us to factorize the unwieldy joint distribution of the sequence (which
in its usual form cannot even be handled by neural networks) as many conditional distributions,
each of which is more tractable:

p(x1,x2, ...,xL) = p(x1)p(x2|x1)...p(xL|x1,x2, ...,xL�1) (2.1)

This is an application of the so-called chain rule of probability. In chapter 3, we will see how
modelling autoregressive conditional distributions looks like in practice (e.g. in Figure 3.10).

In the last years, one class of function approximators has proven itself as particularly adept
in overcoming the curse of dimensionality for many kinds of data: deep neural networks. They
generally consist of multiple consecutive high-dimensional learnable linear transformations and
differentiable nonlinearities. This allows them to be trained end-to-end via stochastic gradient
descent on the available data (Schmidhuber, 2015; LeCun, Bengio, and Hinton, 2015).

There are many different types of deep neural networks, some of them I will discuss briefly
in the next chapter. One particular type, the transformer architecture (Vaswani et al., 2017)
will be described in detail, as it will be heavily used in this work. Notable works after the deep
learning revolution (as the sudden practical success of deep neural networks from the year 2011
on is sometimes called) include the recurrent models of Oore et al., 2018, convolutional (Huang,
Cooijmans, et al., 2019) and transformer-based models (Huang, Vaswani, et al., 2018; Payne,
2019). For a more detailed overview of the different uses of deep learning for music generation, I
refer to Briot, Hadjeres, and F.-D. Pachet, 2017.
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Figure 2.3: A few bars from Scriabin’s Piano Sonata No.5 featuring polyphony, various articula-
tions, rhythmic conflict, tempo variation and phrasing (Scriabin, 1907).

2.2 Symbolic Representations of Music

Up until now, we just assumed that we can represent music as a one-dimensional sequence of
items. We know this is theoretically the case insofar as all possible sounds can be expressed as a
sequence of displacements of a speaker membrane. For this work, however, we are concerned with
the symbolic representations of music—what a composer typically would write as a musical score.
This reduces the demands on the generative model since no realistic sound has to be produced.
But it increases the impact of the representational format.

A musical score is a complex and high-dimensional object. It is not obvious how all the
intricacies of a composition (Figure 2.3) can be squeezed into a single sequence of items. Although
time is clearly the overarching general criterion for determining the position of an item in the
sequence, many things can happen simultaneously.

A few strategies of representing polyphonic musical scores will be presented. The beginning
of the four-part chorale Oh Haupt voll Blut und Wunden by J.S. Bach (Figure 2.4) serves as a
common example.








Figure 2.4: The beginning of the chorale Oh Haupt voll Blut und Wunden

2.2.1 Voice Grid Representation

A representational format that works well for structurally simple kinds of music is the voice grid
(Eck and Schmidhuber, 2002; Hadjeres, F. Pachet, and Nielsen, 2017). The pitches are written
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as MIDI numbers (0-127) in a grid where each instrument or voice is assigned to a row and each
time-step to a column. The length of a time-step should that of the shortest note in the dataset.
For many Bach chorales, eighth note steps are sufficient. Here is the voice grid representation of
Oh Haupt voll Blut und Wunden using eighth note steps:

64 64 69 69 67 67 65 65 64 64 62 62 62 62 64 64
60 60 60 60 60 60 60 62 62 60 60 60 59 59 60 60
55 55 53 53 55 55 57 55 55 55 57 57 55 55 55 55
48 48 53 53 52 52 45 47 48 48 41 41 43 43 48 48

To convert this two-dimensional representation into a one-dimensional sequence, one has to de-
termine a fixed order. Usually, up-and-right ordering is chosen, i.e. we go from the lowest voice
to highest, then the same for the next time step and so forth:

48 55 60 64 48 55 60 64 53 53 60 69 53 53 60 69 52 55 60 67 ...

One immediately apparent problem is that repeated notes cannot be distinguished from held notes.
There are several solutions, maybe the most elegant being the introduction of one additional
symbol (“__”). It simply means that the pitch form the previous time step is held.

64 __ 69 __ 67 __ 65 __ 64 __ 62 __ __ __ 64 __
60 __ 60 __ 60 __ 60 62 62 60 60 __ 59 __ 60 __
55 __ 53 __ 55 __ 57 55 55 __ 57 __ 55 __ 55 __
48 __ 53 __ 52 __ 45 47 48 __ 41 __ 43 __ 48 __

This, however, has the downside that the model may have to look further back to determine which
notes are played at a given time step. The voice grid representation quickly comes to its limits if
any real polyphony, rhythmical complexity or expressive nuance is required.

2.2.2 Piano Roll Representation

A related way of representing symbolic music is in a so-called piano roll format. The canvas is
also a two-dimensional grid, but the rows do not represent instrument or voice but pitch. In this
grid, the active pitches at each time step are highlighted. This is exactly the way performances
were recorded and reproduced for old player-pianos. Instruments each have their own grids that
are stacked together for the full representations, similar to the colour channels of an image. If
one stays with the image analogy, the brightness of a pixel (i.e. the value at a grid position)
determines the loudness of a certain pitch at a certain time-step. If the value is zero, the given
pitch is not played at the current time-step (Figure 2.5).

Despite being quite intuitive, there are several drawbacks: There is no straightforward capacity
for any information beyond instrument, timing, pitch and loudness (such as articulation). Again,
it cannot be distinguished whether a certain note is held or repeated at a certain time-step. A
way around this would be releasing the note for at least one time-step before hitting it again. This
alludes to another problem: For sufficiently detailed timing information, the time resolution has
to be quite high (say, about ten to a hundred steps per second). This is multiplied with the pitch
resolution and the number of instruments, which leads to the grid being very sparse (meaning the
overwhelming majority of cells will be empty since only a few notes are active at each point in
time).

This is problematic for convolutional neural networks (that would otherwise be the natural
choice for this kind of regular grid representation) because very large kernels would be required
to capture patterns in the input data. However, in L.-C. Yang, Chou, and Y.-H. Yang, 2017, it is
shown that using a Generative Adversarial Network (GAN) approach, simple melodies and chord
progressions can be created this way.
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Figure 2.5: Piano roll representation of Oh Haupt voll Blut und Wunden

Even worse is autoregressive generation: It is of course possible to give the cells in the grid an
ordering and generate them in a sequential fashion (e.g. put out the value for every instrument,
do this for every pitch from low to high, and do this again for each time-step). But this leads to
extremely long sequences, of which most elements will also be zero.

2.2.3 Note-based Representation

One natural and musically sensible approach could be representing music as a sequence of note
objects. Each note could have the following features:

• instrument

• pitch

• loudness

• start time

• duration

• possibly articulation, special playing techniques, ...

These features are not independent. If we want to model a musical piece in this way, the start
time of a note, for example, determines the pitches and note durations that should be considered.
Similarly, which instrument plays a certain note has some influence on its loudness. This means we
would have to regard all possible combinations of features for every note as distinct possibilities.
In other words, the joint distribution over all note features has to be modelled:

p(note) = p(instrument, pitch, loudness, start, duration)

For simple kinds of music, such as a Bach chorale, this combinatorial space has a size of about
50000 (for example 4 instruments or voices ⇥ 48 pitches ⇥ 16 relative start times ⇥ 16 durations).
For more complex music, e.g. romantic or modern pieces with many instruments and intricate
rhythms, the number of possibles notes can easily approach a billion. This cannot be efficiently
modelled.

2.2.4 Command-based Representation

The same idea that led us to autoregressive modelling, namely writing the joint distribution as a
product of conditional distributions, see 2.1, can be used here again:

p(note) = p(instrument) p(pitch|instrument) p(loudness|instrument, pitch) ...
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This means we can decompose a note into multiple sequential commands. The size of the
distribution that we have to model for each item of the sequence is now only the sum, and not
the product, of each feature’s number of possible values.

One can think of such a command as changing an implicit state that determines the current
instrument, pitch, loudness and time-step. After a command that sets a certain instrument, for
example, every following command is applied to this instrument until another instrument change
command comes along. And after setting a certain loudness, every note will have this loudness
until it is changed with another command.

Additionally, it is helpful to draw some inspiration from the MIDI protocol. There, notes
do not have a specified duration, but they are switched on and then switched off by a different
command. The timing is controlled by a wait command that determines how much time passes
until the next command will be executed.

As similar kind of music representation was introduced in Oore et al., 2018, and also used
in Huang, Vaswani, et al., 2018, though in both cases only for solo piano, which means that no
instrument or voice change commands were required.

index command current voice current time current pitches
356 voice:Soprano Soprano 0
164 note on:64 Soprano 0 64
357 voice:Alto Alto 0 64
160 note on:60 Alto 0 60, 64
358 voice:Tenor Tenor 0 60, 64
155 note on:55 Tenor 0 55, 60, 64
359 voice:Bass Bass 0 55, 60, 64
148 note on:48 Bass 0 48, 55, 60, 64
99 wait:100 Bass 100 48, 55, 60, 64

356 voice:Soprano Soprano 100 48, 55, 60, 64
292 note off:64 Soprano 100 48, 55, 60
169 note on:69 Soprano 100 48, 55, 60, 69
357 voice:Alto Alto 100 48, 55, 60, 69
288 note off:60 Alto 100 48, 55, 69
160 note on:60 Alto 100 48, 55, 60, 69
358 voice:Tenor Tenor 100 48, 60, 69
283 note off:55 Tenor 100 48, 53, 60, 69
153 note on:53 Tenor 100 48, 53, 60, 69
259 voice:Bass Bass 100 48, 53, 60, 69
276 note off:48 Bass 100 53, 60, 69
153 note on:53 Bass 100 53, 53, 60, 69
99 wait:100 Bass 200 53, 53, 60, 69

356 voice:Soprano Soprano 200 53, 53, 60, 69
297 note off:69 Soprano 200 53, 53, 60
167 note on:67 Soprano 200 53, 53, 60, 67
357 voice:Alto Alto 200 53, 53, 60, 67
288 note off:60 Alto 200 53, 53, 67
160 note on:60 Alto 200 53, 53, 60, 67
358 voice:Tenor Tenor 200 53, 53, 60, 67
281 note off:53 Tenor 200 53, 60, 67
155 note on:55 Tenor 200 53, 55, 60, 67

...

Table 2.1: Beginning of Haupt voll Blut und Wunden in the command-based representational
format. The command column is the human-readable equivalent of the index column. The three
rightmost columns give the current state of context information.
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The command-based representation is highly flexible. For example, additional types of com-
mands could be added without many difficulties. It is also very concise, as there is no unnecessary
or redundant information.

However, the “grammar”, with which I mean the rules and principles that determine how a
sequence of commands give rise to musical objects (such as note), is quite complex. Also, the
splitting up of note objects into elementary commands leads to relatively long sequences. This
puts high requirements on our model. Fortunately, there exist neural network architectures that
are up to the task, as we will see in the next chapter.

To illustrate this method of representation, let us take a look at the beginning of Oh Haupt
voll Blut und Wunden again (Table 2.1). We enumerate all commands that are used: 100 wait
commands, signifying wait times of 10 ms to 1000 ms (command numbers 0-99), 128 note on
commands (one for each pitch, command numbers 100-227), 128 note off commands (also for
each pitch, 228-355), four instrument/voice change commands (356-359), 32 loudness commands
(360-391). The loudness commands will in this case not be used since Bach did not usually write
any dynamic markings in his chorales.

In principle, the first column contains all the necessary information. The three rightmost
columns give the current state that is completely determined by the commands.

However, including this state information can be helpful to the model: The current voice, time
position or harmony (which is given by the current pitches) is extremely important for the model
at many steps of the sequence. Of course, the model can collect this information from previous
commands. But giving it as explicit input features frees up capacities for higher-level modelling
and stabilizes the generation process. This can be experimentally validated.

Only this command-based representation will be used for the rest of this work.

Maybe we can see development in the history of autonomous composing systems: A kind of atom-
ization of the representational format, from whole bespoke phrases and very specific constructs
(Musikalisches Würfelspiel, Emmy) to the smallest musical components imaginable (as we just
have come to with the command-based representations). As a consequence, less and less external
knowledge is encoded into the representations. Instead, the model has to learn all regularities on
its own from the data.

Principally, there are two ways to do this: Either we have very large amounts of data, or the
model makes a priori some assumptions about the data, explicitly or implicitly, that allow more
efficient learning. In practice usually, both are required. The assumptions a model makes are also
called inductive biases (cf. Benjamin, 2012). They should still be very general so that the same
model can be used for broad classes of data. It is not obvious what exactly should be built into
the model and what can be inferred from the data. Finding the right inductive biases for music
can require some introspection on how we perceive and understand music. On the other hand,
we might also be able to infer some things about our own cognition from the principles that work
for the models.

With that, the historical development can also be seen as a shift from representational biases
of the data (which limits the availability of data) to inductive biases of the model.
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Chapter 3

Transformers-based autoregressive

models

The command-based symbolic representational system of music is very powerful. In its presented
form, or with straightforward modifications and extensions, it can arguably represent most con-
ceivable forms of symbolic musical information. Of course, here we are ignoring indeterministic
elements of composition such as improvisational components or free forms.

As already discussed, to use autoregressive modelling, we had to create a one-dimensional
sequential representation. This one dimension is not innate to the data domain (as for example
space dimensions for images or time for waveforms of sound would be), but an artificially con-
structed dimension. We might call it the command dimension. The underlying music is still on a
conceptual level multidimensional (the dimensions being, for example, time, pitch, loudness and
so on).

If we think about how human musicians read and understand a music score, there does not
seem to be a strictly fixed order in which they parse the individual glyphs and incrementally
build up the higher-level concepts in a linear way. Rather, whole notes (possibly with accidentals,
articulation and dynamic markings), chords or even bars are consciously perceived as a single
unit. These units are for their part read in roughly sequential, probably time-wise, order. Our
neural network architecture should reflect these considerations.

3.1 The transformer architecture

For many straightforward tasks, the architectures to choose from are typically fully connected,
convolutional, or recurrent neural networks. But all three of do not have all the desired features:

Fully connected networks only work with a fixed input size. Every input element has its
own unique place, and there is no weight sharing at all. This means, if the input sequence is
shifted by even a single item (which is done all the time for autoregressive modelling), it looks
completely foreign to the network. Thus, they are very inefficient, parameter-intensive and prone
to overfitting. They will tend to memorize the dataset and will not generalize to unknown data.
One could say that this architecture has too little inductive bias, it does not take advantage
of the specific structure of our data. Even very general assumptions about the data (such as,
for example, that it is of sequential nature) can go a long way to creating much more suitable
architectures.

Convolutional networks do make such assumptions. They share the weights of the kernels
across the command dimension, so the network can handle shifts quite naturally. For the same
reason, the input length is not necessarily fixed (although the pooling operations in the higher layer
might have to be adapted). Small perturbations or inserted items (such as an additional loudness
command), however, are a problem, since a unique kernel would be required for each different
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possible version or permutation of a specific higher-level unit. Because of that, convolutional
networks are not suitable for our highly irregular and dynamic representation.

Recurrent networks, in particular Long Short-Term Memory (LSTM) networks (Hochreiter
and Schmidhuber, 1997), have the ability to abstract away all these heterogeneities since they
can dynamically control the flow of information from one step in the sequence to the next. They
are, in fact, Turing-complete universal computers (Siegelmann and Sontag, 1992), so they can,
in principle, handle any grammatical system. LSTMs have indeed been successful in generating
music (Eck and Schmidhuber, 2002; Oore et al., 2018). In practice, however, the sequential
nature of the input is baked very deeply into RNNs. This is problematic insofar as the command
dimension, as discussed, is not innate to the data and therefore should be, if possible, abstracted
away. In recurrent networks, the information of all previous steps is constantly compressed into
a single state vector. This means that the memory from many items long in the past cannot be
very strong.

A relatively new neural network architecture, commonly referred to as transformer and first
presented in Vaswani et al., 2017, solves this memory problem and is able to capture complex,
long-ranging and hierarchical relations in sequences. It is now used for many state-of-the-arts
results, particularly in the field of natural language processing (Devlin et al., 2018; Raffel et
al., 2019; Brown et al., 2020). In the next sections, I will introduce the building blocks of the
transformer architecture and how they fit together.

3.1.1 Attention

q

r

f

↵

f

f

↵

f

f

↵

f

f

↵

f

Input Features

Query

Attention Weights

Weighted Features

Output

compare

(dot product)

normalize

(softmax)

sum

Figure 3.1: Attention mechanism with four input feature vectors and one query.

The concept of attention has been studied in psychology and neuroscience for several decades. At
its most general, attention could be described as the dynamic and flexible allocation of limited
computational resources. In recent years, related ideas have found their way into architectures of
artificial neural networks, creating an important ongoing development in the field. A broad and
up-to-date overview of attention in both biological and artificial systems can be found in Lindsay,
2020.

The basic functional principle that emerged as a useful attention mechanism for artificial
neural networks is the following: We have a set (meaning in this context a collection without any
specific order) of n feature vectors fj 2 Rd. Each of these vectors gets assigned to it a different
scaling factor, or attention weight, ↵j . The vectors are multiplied with their attention weights
and then added together, resulting in a single output feature vector r 2 Rd.

r =
X

j

↵jfj
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The attention weights are usually normalized to have a total sum of one. This way they can be
seen as a distribution over the feature vectors. It can be useful to visualize this distribution and
see which feature vectors have been attended to.

A critical part is of course how the attention weights are dynamically calculated. This is done
by having one query vector q 2 Rd that represents the properties that should be given attention
to. The query vector is compared to each feature vector fj by taking the dot product, which gives
us a single scalar value for every comparison. These scalars are normalized using the softmax
function, resulting in the attention weights. For better learning behaviour, the scalars are divided
by

p
d where d is the number of elements in each feature vector (a diagram is shown in Figure

3.1).

↵̃j =
1p
d

X

i

fijqi

↵j = softmax(↵̃)j =
exp(↵̃j)P
j
exp(↵̃j)

Where the query vector comes from depends on the context in which the attention mechanism
is used. But crucially, it computed based on the current input to the system, which makes the
whole operation dynamic. Several additions can be made to this basic mechanism to make it more
powerful.

3.1.2 Key-Value Attention
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Figure 3.2: Key-value attention mechanism, where the input items are shaped into keys and values
by learnt transformations �K and �V .

Each feature vector f contains both the information that is necessary to determine whether some
attention weight should be assigned to it and the information that will be passed on to the next
processing step if it has indeed been attended to. This means the query has to be constructed
in such a way that it ignores some parts of the feature, namely the ones not determining the
attention allocation. These parts of the feature vectors that are ignored by the query contain the
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most relevant new information because most other information is already contained in the query.
Therefore, at least some amount of computation is always wasted during the calculation of the
attention weights.

To avoid this, we can split each feature vector into two components: a key vector and a value
vector. The key vectors are only used to calculate the attention weights by comparing them to
the query. The value vectors are scaled by the attention weights and added together, resulting
in the output feature vector. The split of the feature vector into key and value vectors is done
using learnt transformations �K and �V (usually a single linear transformation each). These
transformations are shared across all sequence steps. The pre-softmax attention weights are thus
calculated as

↵̃j =
1p
d

X

i

�K(fj)i�Q(fq)i

(fq is the feature vector from which the query is calculated) and the output vector as

r =
X

j

↵j�V (fj).

See Figure 3.2 for a depiction. This procedure, as the terms key, value and query suggest, can be
interpreted as a smoothed out and differentiable dictionary lookup.

3.1.3 Multi-Head Attention

In its current form, the attention mechanism has a single query that gets compared to all values,
resulting in a single set of attention weights. The query can in principle be quite sophisticated,
depending on the size d of the query and value vectors.

In practice, however, it turns out to be a more efficient use of the computational resources
to split all key, value and query vectors into multiple smaller parts and compute a different set
of attention weights as well as a different output vector for each section in parallel. The output
vectors are then again composed into one single larger vector. This is called multi-head attention
and allows a more fine-grained, modular and specific aggregation of information from different
sequence steps. With the presence of multiple heads per layer, the complexity of the information
flow between items can be greatly increased. This usually is an advantage but, of course, makes
it harder to comprehend and interpret how exactly a result was brought about.

3.1.4 Self-Attention

f f f f f

r r r r r

Input Features

Self-attention

Output

(a) Self-attention connections

key (input)

qu
er

y
(o

ut
pu

t)

(b) Attention matrix of the

self-attention mechanism

shown above

Figure 3.3: Simplified depiction of a self-attention mechanism, showing only the weighted connec-
tion and the corresponding attention matrix.
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As mentioned above, these kinds of attention mechanism do not specify where the input features
for either the key-value pairs or the query come from. If we have a set of input feature vectors f
for the key-value pairs, any one of the same vectors could also be chosen as the basis of a query.
If the attention mechanism is executed in parallel for every item f as a basis for the key-value
pairs as well as for distinct queries, this is called self-attention. The output of a self-attention
mechanism is a set of output vectors similar to the inputs. During the calculation, any item of
the input set has the potential to interact with any other item (and itself). So self-attention is a
way to dynamically share, reshuffle and aggregate information between the items of the input set.

In the self-attention setting, every item is linked as query to all items, itself included, as values
by a weighted connection (Figure 3.3a). A clear way to visualize these attention weights is plotting
them as an attention matrix (Figure 3.3b), where the one dimension specifies the query and the
other dimension the key.

3.1.5 Attention Weight Masking
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Figure 3.4: Self-attention mechanism and attention matrix with only causal connections.

It can be necessary to forbid some attention connections, i.e. limit the access of certain queries
to some key-value pairs. The most common example is autoregressive modelling: If the input to
the self-attention is a sequence and the goal is to predict the next item at each step, we cannot
grant the query access to keys and values on its right. These are exactly the values that should be
inferred from the past items, so being able to simply copy them from the input would defeat the
whole purpose. In this case, a triangular mask has to be laid over the attention matrix, setting all
attention weights corresponding to items on the right of the current query to zero. This kind of
masking is also called causal because it preserves the causal principle that items from the future
cannot influence the past.

Depending on the use case, it can also be useful, and sometimes necessary, to limit the access
to items that are too long in the past, or only allow access to items in a certain region. In practice,
this masking is done by setting the logits ↵̃ to �1, which preserves the normalization property
of the subsequent softmax operation.

3.1.6 Transformer Architecture

This self-attention module is the at the heart of the transformer architecture (the original publica-
tion has the title “Attention is all you need”, Vaswani et al., 2017). A transformer usually consists
of alternating self-attention modules and fully connected neural network modules (or multi-layer
perceptrons, MLPs). The latter are applied separately to the feature vectors but their weights
are shared across the items.

Additional features of the transformer architecture are residual connections and layer normal-
izations for both the self-attention and the MLP-blocks. Residual connections refer to the fact
that the output does replace the input of a layer when it is passed on to the next layer, but that
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Figure 3.5: Transformer architecture, showing three transformer layers, each consisting a causal
self-attention module and two-layer MLPs.

input and output are added together and then passed on. This allows unobstructed information
flow from the input to higher layers in the forward pass as well as more stable gradients for the
lower layers in the backward pass.

As mentioned above, the self-attention mechanism allows the redistribution and dynamic ag-
gregation of information across columns. The MLPs then process this newly collected information.
MLPs are highly flexible (they are, in fact, universal function approximators, see Cybenko, 1989).
The advantage of having them shared over columns is that they have to work in many different
contexts at the same time and are in this manner forced to learn very general principles (in a way
similar to the kernels of convolutional neural networks).

The consecutive application of several self-attention mechanisms results in the information flow
following tree-like patterns. If we pick one item of the top and trace back the highly weighted
connection down to the input, we will get a tree that branches out at every layer. In the combined
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attention weights of all layers, every possible tree is contained. This can be seen in Figure 3.6.
Each tree, even every branch of each tree, has a weight assigned to it. A transformer learns in a
way to construct a suitable soft tree structure for any given context.

f f f f f

r r r r rf f f f f

r r r r rf f f f f

r r r r r

Figure 3.6: Causal self-attention connection of a transformer. It can be interpreted as superim-
posed weighted tree structures.

3.1.7 Positional Encoding

The attention mechanism takes as input an unordered set of items, so it has no intrinsic capacity
for retaining any ordering of the input items. The simplest way to not lose this information is
explicitly adding the position of each item as a feature to the inputs. It then has the same status
as all other dimensional information of the data, such as in our case pitch, timing, loudness and
so on.

The best way of adding the ordering information is most likely not a single number enumerating
all items—neural networks are better suited for high-dimensional representations. A common
technique is to have an encoding vector pj 2 Rd represent the position j of the item. The feature
vector fj continues to represent the “content” of the item, meaning all non-positional information
such as pitch, voice and loudness or in the upper layers complex aggregates thereof. Then pj and
fj are added element-wise, resulting in the effective input vectors for the attention mechanism. In
a self-attention setting, this is done before the split into key and query vectors.

If we assume that the transformations �K and �Q are linear (which is the usual way of
implementing key-value attention), we can decompose the calculation of the attention weights as
follows (j being the key-position and k the query position):

↵̃jk =
1p
d

X

i

�K(fj + pj)i �Q(fk + pk)i

=
1p
d

X

i

⇣
�K(fj)i + �K(pj)i

⌘⇣
�Q(fk)i + �Q(pk)i

⌘
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⇣
�K(fj)�Q(fk)

⌘

i

+
⇣
�K(fj)�Q(pk)

⌘

i

+
⇣
�K(pj)�Q(fk)

⌘

i

+
⇣
�K(pj)�Q(pk)

⌘

i

(3.1)

The emerging four terms all have distinct properties and functions in calculating the attention
weights:

• The first term describes the calculation based only on the feature vectors, without any
regard to their position (content-based content selection).
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• The second term distributes attention not based on the content of a query, but it searches
for certain contents at specific positions in the sequence (position-based content selection).
An example could be “at step 19, select all note on commands with pitch 61”.

• The third term selects certain sequence positions based on the content of the query (content-
based position selection), such as “if the next command might be a voice change, select the
item at step 34”.

• The fourth term selects only based on the position of the items (position-based position
selection or static positional bias), for example “from step 75 on, select items from the
beginning of the sequence”.

We can see immediately that the second and third terms are only of limited use in our case.
Addressing an absolute position can only make sense, if at all, for the first few steps of the
sequence. After that, the absolute position of an item simply has no meaning in our symbolic music
representations (the same is true in natural language for sequences spanning several sentences).

One way of representing the item position is one-hot encoding. Here a different element of a
vector is set to one for each input item. This, however, does not generalize to input sequences of
different lengths.

Another slightly more elaborate way, also introduced in Vaswani et al., 2017, uses a fixed
positional encoding based on the complex exponential function, or sine and cosine functions:

PEjm = exp
⇣
i
j⇡

2
exp(

�sm

2d
)
⌘

(3.2)

Here, i is the imaginary unit, s is a scaling factor (e.g. 10.0) and d is the number of features
of the resulting positional encoding, assuming that the real and imaginary parts of the complex
numbers are counted as separate values. The index j gives the position in the sequence and m
the feature. This encoding has a distinct representation of each position in the sequence that can
be added to the corresponding feature vectors (Figure 3.7).
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Figure 3.7: Sinusoidal positional encoding according to 3.2

This particular encoding has a major benefit: Often the relative position of one item to another
is more important than the absolute position in the sequence. Here, the same transformation
can be used to get from any positional encoding to one at a certain distance to it: Simply a
multiplication by a constant complex number (in the case of complex features) or a rotational
matrix (in the case of real-valued feature pairs) shifts the encoding by a certain number of steps, no
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matter the absolute position. These are linear transformations and hence can easily be performed
by the learnt functions �K and �Q.

3.1.8 Relative Attention

It is possible to modify the attention mechanism in a way that is even better suited for domains
where the relative position of items is paramount (which is certainly the case for our command-
based musical representations).

The idea is that we use a positional encoding p not to represent a certain absolute position j,
but to represent the relative position k � j, where j is the position of the value vector and k is
the position of the query vector. This approach was introduced in Shaw, Uszkoreit, and Vaswani,
2018 and refined in Huang, Vaswani, et al., 2018; Dai et al., 2019. In this case, equation 3.1
becomes:

↵̃jk =
1p
d

X

i

⇣
�K(fj)�Q(fk)

⌘

i

+
⇣
�K(fj)�Q(pj�k)

⌘

i

+
⇣
�K(pk�j)�Q(fk)

⌘

i

+
⇣
�K(pk�j)�Q(pj�k)

⌘

i

.

The first term is exactly the same. The other three terms are changed:

• The second term (position-dependent content selection) now searches for certain keys at
specific positions relative to the query. For example “look for an instrument change at the
previous sequence step” or “select Bass notes in the vicinity of the current step”.

• The third term (content-based position selection) lets the query select a certain position
relative to itself. Examples could be “if the next command might be a voice change, select
the previous item” or “if this particular situation calls for, select item the five steps ago”.

• The fourth term (position-based position selection) now selects based on only relative po-
sition, so it could be called static relative positional bias. Examples are “Only ever select
the previous item” or “decrease the attention weight with increasing distance to the current
step”.

For some not specified reason, in Dai et al., 2019, the mechanism is further simplified, losing
the position dependency of the second term and being left only with a static content bias. The
models used in this work will have relative attention as stated in 3.1.8. How the construction of
the attention matrices from the four terms looks like in practice can be seen in Figure 3.14.

The positional encoding p can be the same as described in (3.2). It does not, however, bring
the same benefits as for the absolute positional encoding, since we do no longer have the need of
the pseudo-relative attention it enables.

The idea of relative attention can be extended beyond the relative position of the items. Nat-
ural extensions for the domain of music could be, for example, calculating attention weights based
on the relative pitch of two items, or comparing their time positions instead of their sequence po-
sitions. One could even incorporate the command-based principles into the attention mechanisms
by automatically increasing the attention weights on those previous items that directly affect the
current position (for example the last voice and loudness change commands, as well as the last
wait command or the last note on and note off commands in the current active voice). I tried out
several such ideas in preliminary experiments but found that they greatly complicate the model
while decreasing computational efficiency and generality, as well as having little to no influence
on the performance. In practice, it turns out that extending the input features with relevant state
information, as described in section 2.2.4, is both easier and more effective.
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3.2 Generative Methods

3.2.1 Autoregressive Generation

What we aim for with training our transformer architecture on the dataset could be called a
music language model (MLM), following the terminology of natural language models (LM) such
as presented in Radford et al., 2019 and Brown et al., 2020. As described, it models the distribution
over the current item of a sequence conditioned on the previous ones p(xi|x1, ...,xi�1).

Such a model can easily be used for the autoregressive generation of sequences by sampling
from the output distributions one item at a time (Figure 3.8).

x1 x2 x3 x4

sample from p(x2|x1) sample from
p(x3|x1,x2)

sample from
p(x4|x1,x2,x3)

Figure 3.8: Autoregressive generation of a sequence.

The outputs of our model for each step are logits ai that are then fed into a softmax operation
to form a normalized probability distribution.

softmax(a)i =
exp(ai/⌧)P
j
exp(aj/⌧)

Here, we introduced a new parameter ⌧ , often referred to as temperature, that affects the entropy,
or the amount of randomness, of the resulting distribution. Intuitively, it does that because the
exponential function increases the relative difference between large values and decreases it between
small values. A temperature approaching 0 will result in a near-deterministic distribution with
the only possible choice being the one with the largest logit. For a high-temperature value, the
distribution gets close to uniform. During training, the temperature is set to 1. This usually also
works best for generating samples with an MLM that shows good performance (a low negative
log-likelihood) on the validation set.

Samples generated using low temperatures will have a high likelihood (according to the model’s
own assessment), which is per se desirable. The problem is that those samples have a tendency
to fall into repetitive, “safe” and uninteresting patterns. Also, the variability between different
samples is reduced. In the extreme, the same sequence will be generated every time.

On the other hand, a high temperature increases the probability of obvious mistakes. It can
also happen that the sequence drifts into regions that are so different from the training set, and as
a result so foreign to the model, that no sensible prediction of the next item can be made. Then
there is little chance of recovery.

Nevertheless, it can be interesting to push the temperature upwards to get more unexpected
and surprising results. Low temperatures might be needed if there is not enough training data
available, resulting in poor test performance. Decreasing the temperature can lead to more
coherent samples. It is roughly equivalent to overfitting on the training set, which means that the
generated sequences will tend to copy familiar sections.

3.2.2 Beam Search

Generating a sequence can also be seen as a search problem. Namely, of all possible sequences,
we want to find the one with the highest total likelihood

p(x1)p(x2|x1)...p(xL|x1, ...,xL�1)L.

We multiply by the number of sequence steps L, else short sequences would have a clear undesirable
advantage.
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Autoregressive generation suffers from its greediness. It does not account for the fact that it
is possible that selecting a seemingly unsuitable item for the current step can potentially lead to
a situation in the future that more than compensates for the current low likelihood. Also, if by
chance a bad item is sampled at any point, there is no way of going back and fixing the mistake.

An exhaustive tree search is computationally infeasible since every possible sequence has to be
checked. One practicable compromise is stochastic beam search (cf. Kool, Van Hoof, and Welling,
2019). We start by choosing the beam width B and sample B times (without replacement) from
p(x1), starting B distinct sequences. For the next item in each sequence, we again sample B
times, leaving us now with a total of B2 sequences. From these, we select the B sequences with
the highest total likelihood and discard the rest. This procedure is repeated for every generation
step (see Figure 3.9).

It is important to increase the temperature when sampling for the stochastic beam search.
Else, the results are again quasi-deterministic, since only the best choices are retained.
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keep B best
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Figure 3.9: Generation of a sequence using stochastic beam search with B = 3.

3.3 Bach Chorales Experiment

3.3.1 Dataset

The most important dataset used for this project is the collection of all 376 chorales in four-part
harmony written by Johann Sebastian Bach. They are split into a training set (338 chorales)
and an evaluation set (38 chorales). They are represented in the command-based representational
format, exactly as shown in 2.1. The command and the current voice features are represented
as one-hot vectors, the current pitches in a multi-hot vector and the current time as a positional
encoding similar to the one presented in 3.1. No loudness commands are used since Bach did not
write any dynamic markings in the chorales. All chorales are set to have the same tempo. The
original key is retained, though during training the piece can be randomly transposed up or down
by a minor third or less.

3.3.2 Model Architecture and Evaluation

An autoregressive architecture, consisting of 8 causal transformer layers, is used. The size d of
the feature vectors is 128. Learnt linear transformations are used to match the number of input
features of the data with d, and to create the right number of output features (the number of
available commands). The MLPs in the transformer have a single hidden layer with a size of
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512. The attention mechanism has only one head since this makes the model easier to analyse
and additional heads did not improve the performance for this dataset. An ADAM optimizer
(Kingma and Ba, 2014) is used with a batch size of 32. A learning rate schedule with a warm-up
phase (1000 steps) and cosine annealing (100000 steps) is applied. The maximal learning rate is
0.0003. The sequence length, the number of items the attention mechanism can process, is 256.
As regularization, in addition to the 10% dropout typically used for transformers, input dropout
is used. This means that during training, each input item (all features representing one step of
the sequence) has a 20% chance of being set to zero. This reduces the risk of overfitting and forces
the model to make robust inferences that rely on more than just very specific previous items.

To examine the effect of the relative attention mechanism, several models were trained. The
first model uses the complete relative attention as explained in 3.1.8. Models 2 to 4 are each
trained without one of the terms of the relative attention: model 2 without position-based content
selection, model 3 without content-based position selection and model 4 without position-based
position selection. Model 5 uses no relative attention at all and relies only on the positional
encoding added to the input items. Model 6 again uses full relative attention but does not get
the additional contextual input features (current voice, current pitches and current time). These
additional features are the most significant change to the architecture of the music transformer
used in Huang, Vaswani, et al., 2018. Their work is thus comparable to model six. The evaluation
results can be found in Table 3.1.

The validation loss is the average negative log-likelihood that the model ascribes to the un-
familiar validation set. A small value means that the model, which has modelled the probability
distributions over all items one step in the future, assigns high probability to the actually occur-
ring items in the validation set. Validation accuracy is the average percentage with which the
model predicts the next item correctly. This can be broken down further since different kinds of
items tend to have different uncertainty. For example, in the context of Bach chorales, a trained
model can predict note off commands with 100% accuracy. This is because if there is a voice
change command and there is a note active in the new voice, the only possible command is to end
this note. Of course, if one voice could play multiple notes at once, or if the structure were more
polyphonic, this would no longer be true. It can be seen that for Bach chorales, in general, the
note on commands are hardest to predict. This is not surprising, since they determine the pitch,
and with that melody and harmony of the piece.

In Figure 3.10, the modelled distributions for a sequence are shown. We see that the entropy
(the degree of uncertainty) of the distributions greatly depends on both the grammatical and the
musical context. Some distributions are completely deterministic, such as the ones for the first
and last shown step. For the second step, which is the first note on command, the distribution
has high entropy, since nothing is yet known about the piece. The more notes of the first harmony
are determined, the fewer options are there to choose from for the remaining notes.

The performance of the first four models, which all employ some form of relative attention,
is very similar. Perhaps surprisingly, the ablated versions (particularly model 2) perform slightly
better than model 1, which uses the full relative attention with all terms. This could be due to
the fact that any one of the relative attention terms can be functionally replaced by the other
terms, which then each have an increased capacity since the same parameter count is used to
model three instead of four terms. The difference in performance, however, is so small that it is
most likely negligible. Models five and six show significantly worse results, which suggests that
both relative attention and the additional contextual input features are indeed helpful.

We can also look at the negative log-likelihood that the models ascribe to the samples they
have generated themselves (Figure 3.11a). The performance is for the most part correlated with
the validation loss. But interestingly, the absence of relative attention in model five leads to a
much more significant deterioration of the generated sequences than the validation loss would
suggest. The increased local focus of the relative attention mechanism on the current position
seems to stabilize the model when it is freely generating.
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Model NLL accuracy note on wait voice
1 full relative attention 0.172 94.0 % 75.0 % 82.1 % 95.3 %
2 no position-based content selection 0.168 94.1 % 75.6 % 83.8 % 95.4 %

3 no content-based position selection 0.171 94.0 % 74.8 % 82.9 % 95.4 %

4 no position-based position selection 0.170 94.1 % 75.4 % 82.6 % 95.4 %

5 no relative attention 0.189 93.4 % 71.6 % 80.5 % 95.3 %
6 no additional input features 0.200 92.9 % 73.9 % 81.1 % 95.1 %

Table 3.1: Validation performance of the models trained on the Bach chorales dataset.
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Figure 3.10: The probability distributions given by the trained model for multiple steps of a
sequence. In the vertical direction, all possible commands are lined up. The individual columns
show the distributions for each step, with the correct command stated at the bottom.
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3.3.3 Discussion

From Figure 3.11b, we can see that sequences that are generated using beam search with B = 3
and ⌧ = 3.0 have a similar NLL to the ones generated with the natural autoregressive setting
(B = 1, ⌧ = 1.0). Empirically, however, the beam search samples sound more natural and have
fewer obvious mistakes. Chorales generated from scratch by model 1 using beam search are shown
in Figures 3.12 and 3.13.

The model mostly adheres to the generally accepted rules of four-part harmony, such as the
prohibition of parallel fifths or octaves, the avoidance of crossings with the outer voices and
doubling of the third, or singable lines. There are some mistakes, such as the parallel fifths in
the second half of bar 12 and the poor voice leading in bar 15 of the first piece, or bar 11 in the
second piece. There seems to be a tendency to multiple mistakes at the same spot. A possible
explanation for this could be that a single bad item derails the model and in doing so diminishes
the quality of the next few items.

The model holds the key it started with rather well, although the second piece suddenly
modulates to A flat major at the very end. A general problem is holding onto the metric structure.
Because of the flexible dynamic representational format, the model can add or omit a single beat
without perturbing the structure too much. For the listener, however, it can be very noticeable.
This could be corrected by adding items that, for example, represent bar lines or fermata symbols.
But to keep the representation as simple and general as possible, not such items were used.

In the two examples, there is no obvious metric shift. But the phrasing could be more distinct
and the section divided more clearly.
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Figure 3.11: NLL of generated samples.
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Figure 3.12: First chorale generated by model 1 using beam search with B = 3 and ⌧ = 3.0.
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Figure 3.13: Second chorale generated by model 1 using beam search with B = 3 and ⌧ = 3.0.
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3.3.4 Attention Evaluation

The attention weights that are computed as the model processes data can give, as mentioned
before, interesting insights into how information is picked out and aggregated from the different
sequence steps.

In this section, we analyse model 6, which is the model with full relative attention but no
additional input features (such as current voice, current time or current pitches). This means that
any information from a particular item can only be accessed through the attention mechanism,
making this particular model easier to interpret.

In Figure 3.14, we see the attention weights of transformer layers 1, 3, 5 and 8 as they are
processing the first two bars of Oh Haupt voll Blut und Wunden. We can see different patterns
emerging: Layer 1 spreads attention over triangular shapes, which correspond to all items that
fall on the same metric division. Layer 3 has a much more focussed attention, mostly on either
the current item or the last wait command. For layers 5 and 8, the attention weight is distributed
in a smooth way near the main diagonal, which means that the information of several local items
is combined.

Figure 3.15 shows the attention weight of all eight layers in the leftmost column. The other
columns show the four terms of the relative attention calculation described in 3.1.8. Column (b)
shows the purely content-based selection. Since there is no position information present in the
items, this term serves as a bias of what items could be of interest, either in general (e.g. the
vertical lines in layer 3) or in a certain situation (e.g. the variation of horizontal lines in layer 7).

Column (c) shows the position-based content selection. In layer 3, there is a highlighted region
to the left of the main diagonal, with a distance from the current step of about 15-25. In this
region, this attention term looks for specific items and assigns weight to them. Another effect can
be seen in layer 4, where there are clear gaps on the main diagonal. The items at those positions
seem to be lacking some information that has to be collected from previous steps.

Column (d) shows the content-based position selection. Most striking for this term are the
horizontal lines in, for example, layers 4 and 7.

In column (e), the purely position based selection, we can see the positional bias of this
attention layer in form of different weighing of the diagonals. This does not depend on the
content and will thus be constant for all inputs.

One problem with interpreting the attention weights this way is that, apart from the very first
layer, the items over which the attention is distributed do not directly correspond to the input
items. The information present at a certain position in the higher layers crucially depends on how
exactly the previous layers distributed and aggregated information (cf. Brunner et al., 2019).

We can try to reconstruct this aggregation by plotting attention trees (as alluded to in 3.1.6
and Figure 3.6). This is done by starting with the current position at the top-most layer. Here,
the positions with the highest attention weight are selected and a connection is drawn. For each of
these positions, from the preceding layer again the positions with the highest weights are chosen
and connected. This is repeated recursively until the input layer is reached, resulting in a tree
that shows how the information flows through the attention mechanisms from the input sequence
to the current output position. Several such trees are shown in Figure 3.16. One thing to note is
that every layer has, because of the residual connections, automatically access to the information
from the items of the previous layer at the same position. This could be shown as every node of
the tree having a straight vertical line downwards (as well as branching out).

The structure of the resulting trees is at least in parts explicable. If we look, for example, at
the topmost tree (which belongs to the last Soprano note), we see that at the end of a phrase,
there is increased attention on the beginning. For the most part, however, it is difficult to make
complete sense of the emerging trees and to determine how closely they mirror, for example,
music-theoretical generative principles such as the ones mentioned in 2.1.3.
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Figure 3.14: Attention weights of four selected layers for the first phrase of Oh Haupt voll Blut
und Wunden, roughly aligned with the score.
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Figure 3.15: Attention weights for the first 64 items of Oh Haupt voll Blut und Wunden. Column
(a) shows the full attention matrix. The other four columns correspond to the four individ-
ual terms: content-based content selection (b), position-based content selection, content-based
position selection (c) and position-based position selection (d).
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Figure 3.16: Attention trees for the note on commands of the Soprano voice.
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3.4 MAESTRO Experiment

3.4.1 Dataset

To explore the flexibility and power of both the representational format and the model architec-
ture, I trained a very similar model on the MAESTRO dataset (Hawthorne et al., 2018). This
dataset consists of more than 200 hours of piano music that was recorded as MIDI files on a com-
puterized grand piano during several piano competitions. Thus, the data are real performances,
including all interpretative details and sometimes wrong notes. Still, they are clearly symbolic
and can be brought into the command-based format without any difficulty. The performed pieces
come from the classical virtuosic piano repertoire of the 17th to the early 20th century.

Since only works for piano solo are featured in this dataset, there are no voice or instrument
change commands. Instead, loudness commands are frequent. The use of the sustaining pedal
was converted into note durations. There is current loudness input feature that states which of
the 32 loudness levels was selected most recently. Besides transposition (like the Bach chorales),
the training dataset is also augmented by changing the tempo with the factors 0.9, 0.95, 1.05 and
1.1. Everything else is the same as described in 3.3.1. The training set includes 967 performances,
the validation set 137.

3.4.2 Model Architecture and Evaluation

For the MAESTRO dataset, a substantially bigger model is needed. The building blocks are
exactly the same as for the Bach chorales experiments, some of the hyperparameters are, however,
changed. There are six transformer layers with d = 512. The hidden layers of the MLPs have size
1536. 5000 warm-up and 500000 annealing steps are used. The maximum sequence length is 512.
No input item dropout is used.

This model was trained only in the full relative attention version with the additional input
features current time, current loudness and current pitches. Of course, no instrument change
commands are necessary for this piano solo dataset. The negative log-likelihood of the validation
set is for this model of course much higher since the data are much more complex. The exact
performance is shown in Table 3.2. The note end command is no longer deterministic since
multiple notes can be active at the same time. For the wait and loudness commands it is hard to
achieve high accuracy since they have relatively high resolution and are noisy for real performance
data.

The generated samples of this model have an average negative log-likelihood of 1.40± 0.0642
(also taken from the better half of all generated samples).

Model NLL accuracy note on note off wait loudness
full relative attention 1.43 56.9 % 70.5 % 80.90 % 25.4 % 26.1 %

Table 3.2: Validation performance of the model trained on the MAESTRO dataset.

3.4.3 Discussion

In Figure 3.17, a transcription of the performance generated by the model is shown. The output
of the model can be converted into a MIDI file. It only describes the pitch, velocity and abso-
lute timing of each note. There is no information about tempo, metric, structured rhythm or
dynamic markings. I tried to write it down in a conventional format while capturing details of
the performance as accurately and faithfully as possible.

It is not clear how appropriate and insightful a detailed music-theoretical analysis of this piece
would be. But I will point out some of the characteristics that might reflect on the capabilities
and shortcomings of the generative model.

The first thing to note is that everything can be played by a real-life pianist, there are no
impossible passages. In fact, everything is set in a rather pianistic fashion. In the beginning,
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we have a bass line, a syncopated melody and harmonic accompaniment in the middle. The
beginning has an undulating rhythmical pattern with eleven notes on the half-beat and five notes
on the quarter beat. It stays consistent across the first five bars, which is very positive. Similar
asymmetric rhythms can be found in the works of, for example, Schumann, Liszt, Scriabin or
Ravel.

There are some interesting, maybe unconventional harmonic modulations, for instance from
an Eb7 chord to g minor with D as a bass note in bar 3 or the harmonic changes in bars 7 and
8. But those are integrated into the melodic flow and coincide with quite natural agogic changes.
This means, even if by chance an unexpected or unusual item is sampled at one point, the model
subsequently reacts to it and tries to integrate it in a musically sensible way.

The longer second part, beginning in bar 11, is of a quite improvisatory nature, there is no
clear metric structure. This does not necessarily mean that it is unrealistic, as there are pieces of
the romantic and early 20th-century repertoire where the meter is intentionally obscured. Some
of the free transition set in third or sixth intervals are reminiscent of improvisatory passages in
works of Chopin or Liszt.

Although the musical surface is rather distinct and consistent, it seems to lack direction,
coherence and intent. There are touches of motivic variation, for example from bar 20 to 24. In
general though, the melody is meandering and not building any dramatic or structural tension.
This is not surprising as the receptive field of the model—how much of the past it can recall—is
only a few bars. So if a motive or a phrase is not repeated for a while it will be forgotten. For
the same reason, there is no satisfying ending.
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Figure 3.17: Sample generated by the MAESTRO model using beam search with B = 3 and
⌧ = 3.0 (manually transcribed).
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Chapter 4

Quantized Autoencoders and

Discrete Representations

We have seen that transformer-based purely autoregressive generative models give encouraging
results. They show no difficulty in handling the intricacies of the command-based representational
system. Quite the contrary, they are very well suited to gather information scattered across long
sequences and entangled in intricate connections. This also allows them to capture complex
musical structures and coherences, at least in the small to medium scale. Additionally, they have
proven themselves to be quite general in regard to musical style and genre.

But there are severe limitations. The attention mechanism is hard to scale since memory and
computational complexity grow with the square of the sequence length (since we have to construct
square attention weight matrices). Long and complex pieces of music can easily require sequences
with a length of several hundred thousand items. This is, at the current time, very far from
computationally feasible.

Even if it were, this would not result in any real understanding of musical form since such
models lack the ability of looking ahead and planning. Even a freely improvising musician usually
has at least a rough idea of how their solo might develop. Let alone a classical composer who often
starts with the formal structure and fills in the details bit by bit. So some kind of non-sequential
processing and high-level organization likely is crucial for the composition of satisfying pieces of
music.

Another problem with autoregressive modelling is that the generative process is hard to be
controlled. Once started, it will simply produce one item after another until it is stopped or
reaches an end token. If to this end no explicit mechanisms are added in some way (such as by
conditioning on the composer during training as in Payne, 2019), there is little opportunity to
significantly influence the outcome.

One approach addressing those shortcomings is learning a higher-level representational format of
the musical data. There, the command-based syntax, for example, as well as other regularities
of the data, can be abstracted away. Thus generating music in a suitable learnt representational
space is in a sense more pure and direct since there are fewer mundane rules and obstructions.
Ideally, we might compare it to the Würfelspiele where every configuration results in a viable
piece of music.

4.1 Variational Autoencoders

The principle of a probabilistic autoencoder can be stated in the following way: We have an
encoder model q(z|x) that transforms input data x into representations z and a decoder model
p(x|z) that reconstructs the original data from the representation. Additionally, we have to define
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a fixed prior distribution p(z) that regulates which representations z are allowed.
Our objective is still to maximize the likelihood of the data Ex log p(x) =

P
x p(x) log p(x).

It is, however, not clear how to use it for jointly optimizing both the encoder and the decoder
model. This can be done with the theory of Variational Autoencoders (or short VAEs, Kingma
and Welling, 2013; Kingma and Welling, 2019).
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This not quite where we want to be, since we have no direct access either p(x, z) or p(z|x). But we
can observe that the second term, the Kullback-Leibler divergence of q(z|x) and p(z|x), cannot be
negative. Therefore, the first term is a lower bound of log p(x). This term is called the evidence
lower-bound (ELBO).
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If we find a way to maximize the ELBO, we are consequently maximizing log p(x), which is exactly
what we want, while also minimizing the DKL term. Our decoder model gives us p(x|z) and we
have a fixed prior p(z). Thus it is convenient to rewrite the ELBO as follows:

LELBO(x) = Ez⇠q(z|x)


log

p(x, z)

q(z|x)

�

= Ez⇠q(z|x)


log

p(x|z)p(z)
q(z|x)

�

= Ez⇠q(z|x) [log p(x|z)] + Ez⇠q(z|x)


log

p(z)

q(z|x)

�

= Ez⇠q(z|x) [log p(x|z)]�DKL(q(z|x)kp(z))
Now the first term can be interpreted as the negative reconstruction loss of the autoencoder. It
is similar to the loss that we used to train purely autoregressive models, with the difference that
the model (the decoder) is now conditioned on the representation generated by the encoder. The
second term, the KL divergence of the distribution of the latent variables generated by the encoder
and the (fixed) prior p(z), can be seen a form of regularization. It limits the capacity of the latent
variables and forces the encoder to compress the information necessary for reconstruction instead
of simply storing everything in the z variables unaltered or merely rearranged.

To generate new samples from a VAE, we first sample latent representations z from the prior
p(z). Those are given as input to the decoder q(z|x), which transforms them into samples from
in data domain.

There are many successful applications of VAEs for learning useful representations and generative
models (Ha and Schmidhuber, 2018; Roberts et al., 2018; Gómez-Bombarelli et al., 2018). For rich
representations of long sequences, however, the approach comes to its limits. A complex sequence
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with variable length cannot be efficiently represented by a single latent variable, even if it is very
high-dimensional. Instead, a sequence of representations z is needed, in a way possibly a shorter
and compressed version of the input sequence x. Then, for generation, we also have to generate
a latent sequence. Generating sequences of multi-dimensional continuous representations, which
the zs are, is very challenging.

But we can try to learn discrete representations. Then generating sequences of z would be
similar to the learning of sequences of discrete commands which we did in the last chapter. In
fact, exactly the same models can be used.

Also, it is in many ways natural to represent music in a quantized discrete way. Many aspects
at least of western classical music are inherently discrete, or categorical, such as pitch, harmony or
rhythm. If we want to learn high-level representations, it makes little sense to have a continuous
spectrum between, say, the concepts of an avoided and a perfect cadence.

4.2 Quantized Autoencoders

If we only allow a certain number of discrete values for the latent variables z, this automatically
limits the information capacity and diminishes the need for further regularization. This also
arises naturally from the VAE framework: We set our prior p(z) as a uniform distribution over the
available values of z. Then DKL(q(z|x)kp(z)) is constant and can be ignored for the optimization.

To construct a neural network architecture capable of encoding and decoding sequences that
represent symbolic music bears some challenges. Firstly, we want to have our sequence of latent
representations z to have a lower resolution, since higher-level features should be captured there
and some details of the command-based syntax will be abstracted away. Then, the generative
model for the latent representations is able to capture longer musical structures with the same
sequence length. This means that the encoder has to downsample the input sequence and the
decoder has to upsample the latent sequence. In their original design, transformers have no
such capability. But a simple learnable down- or upsampling modules can be added between
transformer layers to achieve this. A downsampling module consists of a convolutional layer with
a small kernel and a max-pool layer. An upsampling module is a single inverse convolutional
layer.

Secondly, the decoder still has to be probabilistic. We cannot deterministically transform the
latent sequence into a viable reconstruction. This is because we have no reliable way of measuring
how similar two sequences are. If we had, we could simply use the difference between original
and reconstruction as the reconstruction loss. We can easily see why this is difficult for our kinds
of sequences: Let us assume that the reconstruction repeats a note that is held in the original.
The effective results are probably almost indistinguishable. But the reconstruction sequence has
a few additional commands, which means that after these, every item will be completely wrong
in a direct comparison with the original.

To be a tractable probabilistic model, the decoder has to generate the reconstructed sequence
in an autoregressive way but still be guided by latent sequence. In principle, this is easy to
achieve by having alternating self-attention and attention over the guiding sequence (similar to
the transformer decoder architecture in the original publication Vaswani et al., 2017). The problem
hereby is, however, that an autoregressive model is on itself quite powerful, as we saw in the last
chapter, and does not necessarily need any guidance. It can be easiest for the model to simply
ignore the latent sequence. This phenomenon is known as posterior collapse (cf. Lucas et al.,
2019).

A reasonable solution is to stunt the decoder model, or at least its autoregressive part. The
approach we will take is splitting the decoder into two blocks, the feedforward decoder and the
autoregressive decoder. The feedforward decoder transforms the sequence of latent discrete repre-
sentation z into an upsampled sequence of continuous guiding elements g of the same length as
the original input sequence. The autoregressive decoder takes as input the guiding sequence g as
well as the reconstruction, up to where it has already been generated and models the distribution
over the next item that will be reconstructed. It is, compared to the purely autoregressive models
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Figure 4.1: Architecture of a quantized autoencoder with a split decoder.

used earlier, less powerful because it has fewer layers and the attention span is shortened. This
means that only local structures, such as the syntax of the command-based representation, are
managed by the autoregressive decoder. Dependencies over long ranges have to come from the
guidance sequence. For a depiction of this architecture, please see Figure 4.1.

Learning discrete representation with a neural network is inherently problematic. The training
of a neural network is done by gradient descent. For the calculation of the gradients, every oper-
ation in the architecture has to be differentiable. This conflicts with the principle of quantization
operations, which have no well-defined gradients since a small change in the input will either have
no effect at all or cause a sudden jump. Fortunately, there exist strategies to approximate the
gradients necessary for learning discrete representations. Some of them will be presented in the
next sections. An analysis of further techniques can be found in Kaiser et al., 2018.

4.2.1 Vector Quantization

One approach uses vector quantization (A. v. d. Oord, Vinyals, et al., 2017). A codebook con-
sisting of K code vectors ek 2 RD is randomly initialized with D being the dimensionality of
the codes. The encoder generates, as before, continuous latent representations z 2 RD. Each of
them is then assigned to the closest code vector e, and this code vector, instead of z, is given to
the decoder. There are two challenges: Firstly, as mentioned before, the quantization blocks the
gradients from the encoder. This is resolved by calculating the gradients for the code vectors that
were used and then simply copying them unchanged to the corresponding z vectors. Sometimes,
this is referred to as straight-through estimation of the gradients. These gradients can then further
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be backpropagated through the encoder.
Secondly, we need a way to learn sensible code vectors. They should learn to represent useful

information and be spread out such that, for one thing, the distance from each z vector to its
nearest e is not too long and for another thing, not too many z vectors are captured by the
same e. One way to achieve this is an additional loss that is proportional to the average of those
distances. This loss affects both the encoder and the position of the code vectors. One problem
with this loss is that it can easily be minimized by the encoder giving exactly the same results for
every input and one code vector attaining exactly this value. Then, of course, the representations
contain no information. The decoder must have learned to rely on the latent representation for
there to be any incentive for encoding information. A more stable approach is updating the code
vectors not by minimizing the distance loss, but by iteratively moving them towards the mean
positions of all z vectors that they currently have captured (Razavi, A. v. d. Oord, and Vinyals,
2019).

Still, VQ-VAEs are difficult to train. They tend to not fully, or not at all, use the available
codes. There are tricks that can be used during training. For example, once too many z vectors
are assigned to the same e, another unused e is set to have the same value as a randomly selected
z.

Another method is to disable the quantization during the beginning of the training to have the
decoder rely on the unperturbed information in the latent representations. When the quantization
is switched on, the system is more likely to find a use for the now pruned latent representations
and learn to improve them.
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z
z

z

(a) The latent features z are mapped to the clos-

est embedding vector e in the dictionary. In the

backward pass, the gradient of the e vectors can

be calculated (red arrows).
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z vectors. Then the backpropagation for the en-

coder can continue. The e vectors are iteratively

moved towards the mean of the z vectors currently

assigned to it (orange arrows).

Figure 4.2: Vector quantization with dynamic codes e and straight-through estimation of the
gradients of the representations z.

4.2.2 Argmax Quantization

A simplification of the vector quantization is the argmax quantization, introduced in Dieleman, A.
v. d. Oord, and Simonyan, 2018. The encodings e are not learned for this quantization operation,
but they are fixed K-dimensional one-hot vectors (a different value is set to 1 for every encoding,
while all other values are zero). With that, they are the vertices of a K � 1-dimensional simplex.
The z vectors have to lie on this simplex, which means they have to represent a probability
distribution. In other words, all values must be between 0 and 1, and they must sum to 1. This
can be achieved, for example, by the following nonlinearity:
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f(zk) =
max(zk, 0)P
j
max(zj , 0)

The z vectors are again assigned to the closest e, which is in this case simply the one-hot vector
with the 1 at the index of the highest value of z. The gradients are also copied from the embedding
vectors to the z vectors.

An additional loss term can be beneficial to encourage diversity among the different repre-
sentations that are used. For example, the l2-norm of the distance between the average of the z
vectors and a uniform distribution could be used:

L =

�����
1

N

X

n

(zn)�
1

K

�����
2

N is here the number of different vectors zn in a given example.
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(a) The latent features z are mapped to the closest

vertex of the simplex. In the backward pass, the

gradient of the e vectors can be calculated (red

arrows).
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z
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(b) The gradients from the e vectors are copied to

the corresponding z vectors.

Figure 4.3: Argmax quantization with fixed codes e and straight-through estimation of the gra-
dients of the representations z.

4.2.3 Gumbel-Softmax Quantization

Another approach relying on the notion of quantization as an argmax operation is Gumbel-
softmax quantization (Jang, Gu, and Poole, 2016). Here, we are modelling a distribution over all
available embedding code vectors e (they are in this case again not fixed) but only using the one
with the highest value. Again, the argmax operation is not differentiable, so the gradients cannot
flow back to the encoder to let it learn a sensible latent representation.

Let us assume for a moment that the encoder somehow always gave the best possible distri-
bution over the different randomly initialized embeddings. If only ever the embedding with the
highest probability value is chosen, this massively limits the ability to learn sensible embeddings.
One embedding, for instance, could be the second choice in many important situations, but never
the first. Then it will never be updated, despite being potentially very useful if slightly changed.

This can be corrected by adding noise to the distribution over the encodings before choosing the
arg max, so that there is a chance for every embedding to be picked. Adding Gumbel-distributed
noise to the log-probability distribution has the mathematical feature that the probability of a cer-
tain value now being the arg max is the same as its own unperturbed probability. Mathematically,
this can be written as
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p(argmaxi[log zi + �i] = k) = zk.

Here, �i is a sample drawn from the Gumbel distribution, which has the probability density
function g(x) = exp

�
� exp(�x)

�
exp(�x). This means that p(log zi + �i) = g(�i � log zi).

If we know the value of �k, we can express the probability that k is largest as the product of
the probabilities that any other index j is smaller. This, in turn, is determined by the cumulative
distribution function, which is the integral of the probability density function.
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From line two to line three we used integration by substitution with sj = � exp(��j +log zj) and
dsj = s0

j
d�j = exp(��j + log zj). The last step takes advantage of the fact that

P
j
zj = 1 since

they define a probability distribution. Now we can move on to the unconditional case, where we
do not know the value of �k. For that, we have to marginalize over all possible values of �j .
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Again, integration by substitution is used, this time with sk = � exp(��k) and dsk = s0
k
d�k =

exp(��k). This says that if we take the log-probabilities of a distribution, add Gumbel noise
and pick the largest value, every class is picked with exactly the probability of the modelled
distribution. This is known as the Gumbel-max trick (Gumbel, 1948). For now, this is simply a
different clever way to sample from a distribution. We still have the problem that the arg max
operation, just as sampling, is not differentiable. With that, there is no way for the encoder to
learn the distributions.
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The arg max operation, however, can be replaced by a smooth and differentiable approxima-
tion: the softmax function, which we already have encountered. We also saw that by adjusting
the temperature parameter ⌧ we can determine how close to arg max the behaviour of the softmax
function gets (with being equivalent at the limit for ⌧ ! 0). In practice during training, ⌧ is set
according to a schedule, beginning with a relatively high temperature and slowly approaching a
small value greater than 0. For testing, the arg max operation is always used.

4.3 Autoencoder Model

As already suggested, learning discrete representations of symbolic music, while attractive, can
be challenging. It is in many ways a balancing act: If we have a very rich representational
space, with a large number K of codes and the same number of items as the original sequence
the model will have little trouble finding an accurate representation from which the original
can be faithfully reconstructed. But this defeats our purpose of learning compact and concise
representations that can be generated by an independent latent generative model. On the other
hand, if our representation space is too restrictive the model has a hard time during training to
encode anything useful, especially if the autoregressive decoder is powerful. If it is not, however,
the quality of our reconstruction (our decodings) will suffer substantially.

4.3.1 Model Architecture

The goal was to achieve a downsampling factor of four going from the original sequence to the
latent sequence. This seems like an appropriate amount since the command-based syntax of the
input sequence is quite “wordy”, it uses a lot of items to represent relatively little information.
Nevertheless, it proved to be challenging. Only the Gumbel-softmax quantization gives reliable
results for a downsampling factor of more than two.

The autoencoder architectures were all trained on the Bach chorales dataset. We already
established that the concrete command-based syntax of our data should be abstracted away in
the latent representation. There is a way in which we can enforce that: We can express most pieces
of music in a multitude of different but equivalent command sequences. For the experiments of the
last chapter, we have fixed an instrument order. At a certain time step, first, the Bass commands
were given, then the Tenor commands and so on. This ordering, however, is arbitrary and could
be replaced with any other, or just be random. The only command items that always maintain
their position are the wait commands, since they are, in a sense, anchored in the real dimension
of time. In between wait commands, the items can often be permuted in some way without
changing the meaning. What we can do now is having the input sequence in a random but still
valid permutation. The reconstruction, however, has to be in another permutation. This should
force the model to learn a latent representation sequence that is invariant to the permutations of
the input sequence.

We also have to think carefully about the attention mechanisms in the different parts of the
model. It is clear that the self-attention in the autoregressive decoder has to be causal (meaning
that access to future items is prohibited), just as for the purely autoregressive models. The
attention of the encoder should have no such restriction because it is among the encoder’s jobs
to rearrange the input commands into a more general and abstract format, which requires the
combination of commands both from the past and from the future. If the access to the latent
representations from the encoder as well as from the decoder is only via unconstrained attention,
there is nothing that gives them the properties of sequentiality, since their ordering does not
matter (again, the natural domain of transformers are unordered sets). At least when we want
to generate the latent representations this will become highly problematic since we cannot use
autoregressive generation for unordered sets. Hence, the feedforward decoder should have only
causal access to the latent sequence and the autoregressive decoder’s external attention mechanism
over the guidance sequence should be causal as well. This is shown in Figure 4.1.
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Model NLL accuracy note on wait instrument
Gumbel-quantized Autoencoder 0.0573 98.1 % 93.3 % 98.2 % 99.5 %

Table 4.1: Validation reconstruction performance of the model trained on the Bach chorales
dataset.

With these considerations, I found the best-working autoencoder architecture to be the follow-
ing (properties that are not listed are the same as for the purely autoregressive models): The three
blocks (encoder, feedforward decoder and autoregressive decoder) each consist of five transformer
layers. The autoregressive decoder has both self-attention and external attention over the guid-
ance sequence. The attention mechanisms have all eight heads. Encoder and feedforward decoder
have down- or upsampling layers respectively after the second and third transformer layer. The
maximum sequence length is 128. For the autoregressive decoder, the external attention span
(from how long in the past the model can access items from the guiding sequence) is limited to
32 to further encourage locality in the representations. The softmax temperature ⌧ of the Gum-
bel quantization start at 4.0 and exponentially decreases over 100000 training steps to 0.5. The
quantization is switched on after 5000 steps. For the input sequences to the encoder, the voice
order is randomly shuffled. The autoregressive decoder, however, gets the same sequence with
fixed voice order.

The reconstruction performance on the validation set is listed in table 4.2. The negative log-
likelihood is very low compared to the purely autoregressive models. Empirically I found that the
reconstruction performance has to be quite good to yield satisfying results.

4.3.2 Discussion

In Figure 4.4, we see the beginning of a Bach chorale from the validation set, its latent code
sequence and two reconstructions from this sequence. The reconstructions were generated using
beam search with a beamwidth of 5 and a temperature of 2. Since the autoregressive decoder
is probabilistic, reconstructions from the same latent sequence will differ from each other. The
encoder learns a lossy compression, so we cannot expect every singly note to be reconstructed
perfectly. What we are hoping for is that the reconstructions are musically sensible, have no
obvious mistakes and resemble the original closely.

I think we can say that this is mostly the case for these reconstructions. The voice leading is
in large parts sensible (the biggest exception being the bass line in Figure 4.4c bar 2). The model
sometimes seems to have trouble distinguishing between major and minor chords (in our examples
there is some confusion about c minor and c major chords). Other than that, the harmonizations
are valid.
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Beweis dein Macht, Herr Jesu Christ
Johann Sebastian Bach

(a) Original

178, 178, 117, 117, 248, 248, 192, 92, 32, 119, 79, 229, 67, 45, 190,
190, 59, 243, 114, 149, 149, 235, 17, 98, 236, 163, 193, 193, 228, 83,
86, 98, 47, 181, 226, 163, 193, 227, 227, 198, 120, 54, 19, 248, 248,

248, 235, 141, 141, 134, 100, 249, 141, 141, 141, 161, 161, 61, 250, 188,
150, 229, 229, 219, 219, 132, 132, 171, 99, 156, 137, 86, 106, 117, 70,
70, 165, 131, 243, 200, 200, 200, 58, 58, 248, 248, 195, 195, 8, ...

(b) Latent representation sequence of the data (indices of the code vectors)                      
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sample_epoch_170_prompt_0_temp_2,0_width_5_codes
_2_ll_-0.030242779591420032

(c) Reconstruction 1                      
                           





                    
                        

  
 

5

sample_epoch_170_prompt_0_temp_2,0_width_5_codes
_2_ll_-0.03277179404899284

(d) Reconstruction 2

Figure 4.4: The beginning of Beweis dein Macht, Herr Jesu Christ from the validation set with
two reconstruction from the same latent sequence. Differences from the original that are barely
noticeable to the listener are marked in blue, more significant deviations in red.
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4.4 Latent Generative Model

During training, we assumed that the prior distribution p(z) over latent variables is uniform and
that the items of the latent sequence are independent of one another. This was, of course, a
simplification. But now that we have a trained autoencoder we can empirically learn the prior
by creating a generative autoregressive model for the latent sequences. We compute and save
the latent sequences for all pieces of our training and validation set and use them to train the
latent generative model (cf. A. v. d. Oord, Vinyals, et al., 2017). These sequences are simply lists
of numbers representing the corresponding code vectors (see Figure 4.4b). They have no clear
inherent structure (other than being sequential), so no additional information can be added to
help the model.

We use an architecture very similar to the ones we already know. The model that works best
has seven causal transformer layers (each with 8 attention heads), a feature dimension of 256 and
a hidden layers size of 1024 in the MLPs. Full relative attention is used.

4.4.1 Discussion

The negative log-likelihood is quite high compared to the other models (see Table 4.2). The fact
that the relevant information has to be encoded into a shorter sequence means that it has to have
higher entropy (more information) per item and thus is harder to learn. For the same piece to
have the same likelihood in the command-based representation and in the latent representation,
we would need the average negative log-likelihood per item of the latent model to be about four
times as large, since he original sequence is four times as long. The fact that the average NLL of
the latent generative model is considerably higher even than that suggests that the architecture
does not yet fully exhaust the potential and there is further room for improvement.

In Figure 4.5, a newly generated piece is shown. The latent sequence was created using beam
search with the latent model. A beamwidth of 3 was used while leaving the temperature at 1.
This is comparable to purely autoregressive generation with a significantly lower temperature and
is required to obtain acceptable results. The generated latent sequence was then given to the
decoder that generated the command-based representation, using beamwidth 3 and temperature
3.0.

The quality of the produced sample has to be ranked lower than the ones from the purely
autoregressive models of chapter 3. While there are notions of a melody, it is more wooden and
unnatural, presumably due to the artificially decreased entropy of the latent generative model.
There are undesirable metric shifts, for example in bar 7. The voice leading is also problematic:
In the Bass voice, there are several unfavourable jumps, most prominently the major seventh in
bar 6. We also have parallel octaves between Soprano and Bass on the first beats of bars 2 and
4. However, it also clearly shows that high-level discrete representations of symbolic music can in
principle be learned and generated with this approach.

Model NLL accuracy
Latent code model 1.416 65.4 %

Table 4.2: Validation performance of the latent generative model trained on the Bach chorales
dataset.
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sample_epoch_80_code_temp_1,0_width_3_ll_-0.76137
46325174967_vq_vae_temp_3.0_width_5_ll_-0.0562971

7113312695

Figure 4.5: A chorale generated using the latent generative model and the decoder.
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Chapter 5

Conclusion and Outlook

Generative models of music have a long tradition. Historically, these models relied heavily on
what we called representational bias, which requires customized creation, selection or processing
of the data and can often be limiting or time-consuming. The advent of deep learning techniques,
combined with autoregressive modelling, allows a shift to more general representational formats,
such as sequences of commands. Capturing the complexities of a musical score in this format,
however, leads long sequences with non-trivial syntactic rules.

As has been shown in Huang, Vaswani, et al., 2018 and Payne, 2019, the transformer archi-
tecture (which was originally developed for natural language processing tasks) works very well
with these kinds of data. In this work, I showed that we can train our model, without any sub-
stantial changes in architecture or representational format, on data as different as Bach chorales
and virtuoso piano performance and achieve very good results for both of them. Adding con-
textual state features to the input command items gives the model useful additional information
and structure which helps the performance while not adding any complexity to the architecture.
We also looked at how the different terms of the relative self-attention mechanism interact and
how the model builds tree-like structures, potentially reproducing grammatical, musical or even
formal construction of a piece. While the introduced visualization methods can give some intu-
ition, larger-scale quantitative studies will be needed to further clarify how and in what way these
models build an understanding of music. For the generation process, I found that beam search
with a high-temperature setting leads to more stable and at the same time interesting samples.

With enormous amounts of training data and adequately large models, standard transformers
can be scaled to achieve remarkable results (Payne, 2019; Brown et al., 2020). But this approach
is still limited. For one, there is no infinite supply of high-quality symbolic musical data. Music of
a certain composer or a certain style is inherently limited. Moreover, the plain linear progression
of autoregressive models does not allow for the entangled, hierarchical relations between musical
elements and concepts that are the mark of many musical forms.

Using a Variational Autoencoder, we can learn more abstract representations of the data. From
these representations, the original can be reconstructed. This means we can train a generative
model that creates music on a higher level of abstraction, which might be closer to how a composer
thinks about music. The representation, however, will still consist of a sequence of items. For
a standard VAE, the representations will also be high-dimensional continuous vectors. Those
representational sequences would be very hard to model.

For this work, I created models that learn discrete representations which can much more easily
be created by a latent generative model and which at the same time reflect the many discrete
aspects of (at least western tonal) music. For non-symbolic data (pictures and speech), this ap-
proach was introduced by A. v. d. Oord, Vinyals, et al., 2017. Transferring these techniques to
symbolic sequences, despite the fact that the data already is discrete, turned out to be quite chal-
lenging. To employ an autoregressive decoder and at the same time prevent posterior collapse, the
development of a split decoder architecture was needed. The feedforward decoder transforms the
downsampled latent sequence into the guiding sequence, a dense sequence of continuous vectors,
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which the autoregressive decoder uses to reconstruct the original as faithfully as possible. Of the
multiple quantization methods I experimented with, only Gumbel-softmax quantization worked
reliably in a high-compression setting.

The status of this approach as presented here can be seen as a proof of concept which still
requires more work to fulfil its potential. The bottleneck at the moment seems to be the latent
generative model which is not able to find much regularity in the latent sequences. There are
many paths that can be explored to either enforce some structure onto the latent sequences or
train more powerful models to generate them.

Several autoencoders can be stacked in a hierarchical way to learn even coarser and more ab-
stract features where large coherent forms can be produced. The decoders could be conditioned
on certain features of the data. These would then not have to be encoded in the latent represen-
tation. Notable results along these lines have already been achieved for less structured data, such
as images (Razavi, A. v. d. Oord, and Vinyals, 2019) and audio (Dhariwal et al., 2020). For our
application of symbolic music this, could allow, for example, to decode the same representation
in the style of different composers or musical genres and give rise to many creative applications.
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