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Abstract
This position paper argues that truly open-ended
intelligence is bottlenecked by the challenge of in-
terestingness: the ability to prospectively identify
which tasks or data hold the potential for future
progress. We formalize interestingness as an in-
ductive heuristic for future compression progress
and investigate its predictability using tools from
Kolmogorov Complexity and Algorithmic Statis-
tics. By analyzing complexity-runtime profiles
under various priors over computable objects, we
demonstrate that the inductive property of inter-
estingness—the capacity for past compression
progress to signal future discovery—is theoreti-
cally viable. However, we show that this property
is highly sensitive to the underlying distribution
of objects. We conclude by calling for a move
beyond human-in-the-loop filtering or data cre-
ation, and a shift toward introspective models that
can explicitly assess their own potential for in-
sight. Furthermore, we advocate the engineering
of scale-free synthetic environments, providing a
principled roadmap for the development of truly
autonomous open-ended systems.

1. Introduction
Put concisely, this work argues that interestingness is an es-
sential ingredient for open-ended learning and artificial
general intelligence. It can be described as a heuristic as-
sessing the potential of future compression progress. We
are justified to assume that it possesses inductive properties,
meaning past progress can be a predictor of future insight.
There is important work to be done on finding practical inter-
estingness measures, and investigating the exact algorithmic
properties of objects and environments that allow continued
learnability.
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Figure 1. Minimalist depiction of a self-sustaining learning cy-
cle. The Learning phase derives new skills or patterns from data,
while the Generation phase creates novel artifacts. To sustain
true open-endedness, the generation process must be guided by
a criterion that distinguishes learnable structure from noise or
already-acquired knowledge.

We believe that a common notion of how a general open-
ended intelligence might be achieved is, in very simple
terms, as a cycle between two alternating phases (see Fig-
ure 1): In the learning phase, a system uses a learning
algorithm—e.g., gradient descent or Reinforcement Learn-
ing (RL) techniques—to extract patterns and regularities in
the available data, or to gain the skills necessary to solve
available problems and tasks. In the generation phase, the
insights from the learning phase are used to produce novel
artifacts (synthetic data, new tasks, hitherto unsolved prob-
lems). From these, the system then can again learn new capa-
bilities, ideally leading to never-ending progress. To achieve
true open-endedness, this cycle must be fully autonomous.
It cannot rely on human-in-the-loop filtering, hand-crafted
curricula, or synthetic data created by researchers.

One example of such a system would be a Large Language
Model (LLM) that is iteratively trained on self-generated
data, see for example Wang et al. (2023); Zelikman et al.
(2024). It is well known that a naive realization of such
a setup leads to model collapse (Shumailov et al., 2024;
Dohmatob et al., 2024). However, there exist efforts to
modify the generation process, or filter the generated data
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in such a way that continued learning is possible (Lin et al.,
2024; Herrmann et al., 2025b;a). Another example would
be an RL agent that pursues its own goals in an environment.
The goals are chosen according to some intrinsic motivation
criterion (Schmidhuber, 1991c; Pathak et al., 2017; Colas
et al., 2022).

With the success of large scale models trained with gradi-
ent descent and RL techniques, it can be argued that we
have a good handle on the learning phase. How we build
a generation phase that leads to continued progress, on the
other hand, is still an open problem. Using the framing of
Hughes et al. (2024), how can we generate artifacts that
are both novel and learnable? What criterion allows us to
select the samples, problems, tasks from which the system
can learn something meaningful? How can we distinguish
between what is unlearnable, already learned, and so-far
unknown but learnable? How can we tell if such an artifact
is interesting?

To lay out our arguments, this paper proceeds as follows:
In Section 2, we review existing interestingness measures,
and argue that they are largely post-hoc rather than prospec-
tive. This leads us to the question of the predictability of
interestingness, and its inductive properties. Section 3 in-
troduces Complexity vs. Runtime profiles. This framework
allows us to investigate compression progress over time.
In Section 4 we address the induction problem: Can we
predict if an object is worth the effort? We analyze how
different priors over possible objects—Length, Algorithmic,
and Speed—affect our ability to extrapolate future progress.
We conclude with a discussion of other kinds of priors that
might lead to even more reliable prediction of learnability
(Section 5), and calling for a shift toward introspective mod-
els that can explicitly assess their own potential for future
insight (Section 6). We explicitly address alternative views
wherever they naturally arise throughout the paper.

Alternative View: Open-endedness emerges from so-
cial multi-agent interactions.
A compelling alternative is that interestingness is not
an intrinsic property of objects, but an emergent phe-
nomenon of social interaction. Such settings span from
competitive two-player games (Schmidhuber, 1997) to
complex multi-agent ecosystems involving theory-of-
mind and embedded agency (Meulemans et al., 2025).
There, learning potential is often quantified through
disagreement: if a population of models exhibits high
variance in their predictions of an object, that ob-
ject is deemed to contain unresolved, learnable struc-
ture (Pathak et al., 2019; Shyam et al., 2019; Sancak-
tar et al., 2022). Similarly, the notion of impressive-
ness (Lehman & Stanley, 2012) suggests that an artifact
is interesting if it serves as a “proof of work”—a hard-

to-reach state that signals computational effort to other
agents. While we recognize the power of these social
dynamics, we argue they do not bypass the fundamen-
tal problem of interestingness, they merely decentralize
it. Whether an agent is filtering synthetic data or eval-
uating a peer’s “impressive” achievement, it is still
performing a prospective assessment of future progress.
Even a co-evolutionary ecosystem (Pugh et al., 2016;
Brant & Stanley, 2017) can be viewed as a single macro-
agent in a self-generating loop. Therefore, we believe
that the inductive properties of learnability we analyze
in the following sections remain relevant to these social
systems.

2. Proposed Criteria of Interestingness
In the following, we refer to the artifacts a cognitive system
(the subject) learns from as objects. This should highlight
the fact that interestingness is not necessarily an intrinsic
property of an object in isolation, but a relational property
between the object’s structure and the subject’s current in-
ternal state.

Count-based, Space Coverage, and Maximum Entropy
An object can be deemed interesting if it is uncommon, if it
has been encountered fewer times than other objects (Sut-
ton, 1990; Bellemare et al., 2016; Tang et al., 2017). In
high-dimensional spaces, this requires a density model to
quantify novelty via smoothing. If an agent seeks to maxi-
mize the entropy of its state-visitation distribution, it will,
in the limit, converge toward a policy that encounters all
reachable objects with equal probability (Hazan et al., 2019;
Mutti, 2023). In certain restricted settings, this is a rea-
sonable measure of interestingness: if it is possible for the
cognitive system to encounter all possible objects multiple
times, uncommon objects hold the highest surprise in the
Shannon sense. But it does not clearly lead to open-ended
learning: the system will converge towards the maximum
entropy occupancy and then stop learning. If there are more
possible objects than can ever be encountered, this mea-
sure of interestingness completely depends on some form
of coarse-graining or smoothing. In other words, it depends
on a model.

Prediction Error, Adversarial Criterion This notion
moves beyond mere counting by introducing a predictive
model with a learning algorithm. Here, interestingness is
the inverse of the probability assigned by the model (the
“adversarial” criterion). An object that is poorly predicted is
considered interesting (Schmidhuber, 1990; 1991a; Pathak
et al., 2017). However, this fails to distinguish between epis-
temic uncertainty (reducible through learning) and aleatoric
uncertainty (irreducible randomness). This is the “Noisy

2



Position: Interestingness is an Inductive Heuristic for Future Compression Progress

TV” problem (Schmidhuber, 2010): a subject using pure
prediction error as a reward will get stuck observing a source
of pure noise (like a static TV) because it is always unpre-
dictable, yet provides zero learnable structure.

Common approaches to tackle this problem share the insight
that an object loses its interestingness once nothing new can
be learned about it.

Information Gain, Bayesian Surprise If our model is set
up in a probabilistic way, for example as a belief distribution
over a set of hypotheses, then we can measure the informa-
tion gain an object yields. Concretely, this can be quantified
as the Kullback-Leibler divergence between the posterior
distribution, given the object, and the prior distribution. In
more grandiose terms, an object is interesting to the extent
it leads to new insights and changes the model’s “world
view” (Storck et al., 1995; Itti & Baldi, 2005). Once nothing
new can be learned from an object, the information gain
subsides. Information gain can be measured not just over a
set of fixed concrete hypotheses, but also for example over
latent variables (Tishby & Zaslavsky, 2015; Herrmann et al.,
2025b) or the predictions of existing data (Herrmann et al.,
2025a).

Learning Progress, Competence Progress Closely re-
lated to gaining information from an object is the notion
of learning progress (Schmidhuber, 1991b; Oudeyer et al.,
2007; Stout & Barto, 2010). Instead of framing insight in
terms of probabilistic inference and differences between
posterior and prior, we can ask: Does the object lead to
progress on some pre-defined objective function? An ob-
ject is then interesting to the extent it improves the model’s
performance. Whether this is a reasonable measure of in-
terestingness depends, of course, on the specific choice
of objective function. Certainly not all tasks or objective
functions are rich enough to allow open-ended learning.
However, for many models—especially the ones we might
want to use in the setups we mentioned, such as LLMs
or world models (Schmidhuber, 2015; Ha & Schmidhuber,
2018; Bruce et al., 2024)—there is one dominant objective
function: the negative log-likelihood (NLL). It can be ar-
gued that the success of the NLL as a training objective for
models is due to the strong connection between learning
and compression (Hutter, 2005; Delétang et al., 2023)

Compression Progress This leads us to the concept of in-
terestingness as compression progress (Schmidhuber, 2009;
2006). An object might be deemed interesting if it allows the
model to better losslessly compress all available data. For a
full compression of the data, we must account for the size of
the model itself: what we measure is the number of bits re-
quired to describe the model in addition to the bits required
to encode the data given the model. This two-part encoding

of objects is the core idea behind the Minimum Description
Length (MDL) principle (Wallace & Boulton, 1968; Rissa-
nen, 1978). The compression progress associated with an
object is thus the reduction of the total encoding size—the
sum of the model complexity and the data residual—once
the model has incorporated the object. A rich description
of compute-bounded and observer-dependent MDL models
has recently been presented by Finzi et al. (2026).

The criteria discussed—information gain, learning progress,
and compression progress—are closely related in this con-
text: they all measure shifts in the subject’s uncertainty or
description length. Information gain provides a probabilistic
view of these shifts, learning progress (via NLL) provides
an optimization-based view, and compression progress pro-
vides an algorithmic view. They provide an introspective
account, subjective to the system, of how much insight has
been gained. While this subjectiveness seems at odds with
the “objective” measures of Algorithmic Information The-
ory (AIT) we use later, we view AIT as the theoretical limit
that these subjective models strive toward.

All of these criteria implicitly assume that the computational
effort has already been spent. In an open-ended setting, this
assumption is untenable: the generation phase must decide
where to spend effort before the outcome is known. This
means an interestingness criterion must be prospective. It is
not enough to know how much has been learned; we need
to know how much we can still learn. The criteria above are
largely post-hoc: they quantify the progress made after the
computational effort of training has been expended. This
makes them insufficient for the “generation phase,” where
the system must select promising objects from a vast space
of possibilities before committing significant resources to
them.

In everyday speech, we often call a thing interesting be-
cause we have a feeling that it holds further secrets. This
is the sense of “interesting” we advocate for: a prospective
heuristic that predicts future learning progress based on past
experience. This leads to a fundamental question: under
what conditions is such a prediction even possible? To in-
vestigate this, we can formalize the relationship between
past and future progress through the lens of complexity and
runtime.

2.1. Can We Learn How to Predict Learnability?

Before moving to our formal investigation, we must con-
sider whether the prediction of learnability can be treated
as just another learning problem. As described, information
gain, learning progress, and compression progress measures
require running the inference or learning algorithm to eval-
uate an object. This makes them not directly usable in an
open-ended setting: we cannot simply “train on everything”
to see what works. Doing so is not only computationally
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prohibitive but also risks model collapse, as we have men-
tioned before. Instead, we want to predict these measures
before investing the effort to learn from them. What we
usually do when we have “post-hoc” data and want to pre-
dict it is learning how to predict it. This is indeed what
happens when compression progress is used as an intrin-
sic reward for an RL agent, such as in a Controller-Model
setup (Schmidhuber, 2015; Kompella et al., 2017).

However, a meta-cognitive property like interestingness can
be difficult to learn for several reasons: Non-stationarity—
Interestingness is moving target. As the subject learns, an
object that was once insightful becomes boring, requiring
the meta-model to constantly adapt to the subject’s chang-
ing state. Data Sparsity and Cost—Ground-truth labels
for progress are expensive to obtain, as they might require
executing a full training phase just to evaluate a single data
point or task. Credit Assignment—In the many batches
of data required for training, it is profoundly difficult to
identify which specific samples contributed to the reduc-
tion in loss. This credit assignment problem makes it hard
for a predictor to associate specific object features with the
resulting learning progress.

Alternative View: We can predict human-distilled
Interestingness via LLMs.
A compelling alternative to explicit algorithmic mea-
sures is the use of LLMs as a “Model of Interesting-
ness”. The OMNI framework (Zhang et al., 2023; Fal-
dor et al., 2024) argues that because LLMs are trained
on large amounts of human-generated data, they have
already internalized nuanced human notions of what is
worthwhile and novel. By prompting an LLM to gen-
erate tasks that a human would find interesting, these
systems can successfully navigate near-infinite task
spaces while avoiding uninspiring or repetitive data.
However, we must consider the long-term limits of this
approach. OMNI fundamentally emulates human ca-
pacity for nuanced judgment; it effectively asks: “What
would a human want to learn next?” While LLMs
possess rich commonsense priors, what yields learning
progress for a human is not necessarily identical to what
yields progress for an artificial subject. Humans and
our current AI systems possess vastly different learning
architectures and existing knowledge bases. Perhaps,
eventually we will converge to a shared conception of
interestingness among general intelligences—whether
artificial or human. But if the goal is to reach general
intelligence through an open-ended process, we can-
not assume that the current state of LLMs is already
sufficiently close. LLMs currently have no privileged
insight into their own internal compression frontiers—
they are effectively selecting data based on an external

social heuristic rather than an introspective assessment
of their own potential for insight. While it is conceiv-
able that a model eventually bootstraps a sophisticated
self-understanding, true autonomous open-endedness
likely requires the ability to identify potential progress
in domains that human intuition hasn’t yet charted.

We have made informal arguments why it is difficult to
predict future learnability. Essentially, we are asking about
the inductive property of interestingness: can we infer how
much there is yet to learn—and how easily accessible that
content is—based on the trajectory of how much we have
already learned? To answer this rigorously, we now turn
to a formal setting where learning progress is mapped to
algorithmic complexity and runtime.

3. Runtime and Complexity Profiles
To analyze interestingness with sufficient generality, we
move to an abstract setting using the tools of Algorithmic
Information Theory. We consider all data and artifacts as
binary strings x ∈ {0, 1}∗. Let K(x) denote the standard
prefix-free Kolmogorov complexity of x: the length of the
shortest program p on a universal prefix Turing machine
U that halts and outputs x. In the context of open-ended
learning, we are not merely interested in the absolute com-
pression limit K(x), but in the compression progress made
as a function of computational effort. Let Kr(x) be the
time-bounded Kolmogorov complexity: the length of the
shortest program that computes x within r steps. While
Kr(x) is machine-dependent, it allows us to formalize the
learning process as a trajectory of decreasing description
lengths over time.

Consider a system that has observed data D and encounters
a novel object o. We treat the concatenation x = Do as a
single string. If o contains learnable structure relative to D,
then Kr(Do) should decrease significantly as r increases,
representing the discovery of algorithmic regularities. To
study this discovery process, we use the complexity vs. run-
time profile (Vereshchagin & Shen, 2016; Bauwens, 2010;
Antunes et al., 2017):

Dx = {(r, c) | Kr(x) ≤ c}.

The boundary of this profile, c(r) = min{c | (r, c) ∈ Dx},
tracks the shortest description of x available given a runtime
budget r. An object is logically deep (Bennett, 1988) if this
boundary continues to drop significantly even for very large
r. Our central question is about the inductive properties of
the profile: Does the shape of Dx for r ≤ R allow us to
predict the existence of further “drops” in complexity for
r > R?
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Figure 2. Complexity and Profile Dynamics. (Top) The log-size
vs. complexity profile (Px) of a string x, with the partial profile
P̂x observed up to complexity t. The observed characteristic
values are m̂x (complexity of the last drop) and b̂x (log-size of
the smallest set at complexity t), which determines the current
estimated complexity k̂x. We evaluate the expected continuation of
P̂x under various priors; the expected values E[mx] and E[kx] are
functions of the gap t−m̂x, representing the effort expended since
the last discovery. (Bottom) The complexity vs. runtime profile
(Dx) derived from Px via the transformation in Eq. 1. Priors are
indicated on their relevant axes: the Length Prior (string length at
complexity 0), the Algorithmic Prior (program complexity), and
the Speed Prior (the product of distributions over complexity and
log-runtime, as sketched on the lower axes).

3.1. The Log-Size vs. Complexity Profile and
Sophistication

To leverage results from algorithmic statistics, we introduce
a related profile: the log-size vs. complexity profile Px:

Px = {(i, j) | ∃A s.t. x ∈ A,K(A) ≤ i, log#A ≤ j},

where A ⊆ {0, 1}∗ is a computable finite set of strings. The
boundary of Px represents the optimal trade-off between
the complexity of a model (the set A) and the data-to-model
code (the index of x within A). This profile always has a
negative slope of at most −1, reflecting the trivial exchange
between halving the set size at the cost of adding one bit
to the description length of the set. A “drop” in Px oc-
curs when the boundary falls below the line of slope −1.
Such drops indicate that the corresponding model contains
additional structural information about the string, beyond
the random information of the index. The point where the
boundary last meets the −1 slope line before following it
indefinitely defines the sophistication of x (denoted mx),
representing the complexity of the “best” model for x (Kop-
pel, 1987; Antunes & Fortnow, 2009).

3.2. The Px ↔ Dx Correspondence

The relationship between complexity vs. runtime and log-
size vs. complexity profiles is bridged by the Busy Beaver
function BB(k)—the maximum number of steps a halting
k-bit program can run. While BB is uncomputable, it serves
as a universal time-scale that abstracts away machine depen-
dence. With this re-scaling, Px and Dx are approximately
affine transforms of each other:

(i, j) 7→ (BB(i), i+ j), (1)

within logarithmic precision O(log |x|) (see Vereshchagin
& Shen (2016), Theorems 4 and 6). This correspondence is
profound: it implies that every drop in Px (a new non-trivial
model with a higher complexity) corresponds to a drop in
Dx (a progress in compression when the maximum runtime
is increased). Figure 2 illustrates the connection between
the two profiles.

3.3. Counting Strings with Specific Profiles

Any log-size vs. complexity profile P has three characteris-
tic values: The log-size value of the leftmost boundary point
nP = min{r|(0, r) ∈ P} corresponds to the log length
of a string with this profile. The complexity value of the
rightmost boundary point kP = min{r|(r, 0) ∈ P} cor-
responds to the Kolmogorov complexity of a string with
this profile. And the complexity value of the point where
the boundary meets the diagonal line leading to (kP , 0),
namely mP = min{(r, kP − r) ∈ P}, corresponds to the
sophistication of a string following this profile.

We can quantify how many strings have a profile close to
P , where P is a valid profile, meaning an upward-closed
set whose boundary has a slope of at most −1, or formally,
for which (a, b + c) ∈ P =⇒ (a + b, c) ∈ P∀a, b, c.
Vereshchagin & Shen (2016) (Theorem 19) limit the mini-
mum number of strings close to P :

#{x|Px ≈ P} ≥ 2kP−mP+O(1), (2)
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Figure 3. The expected difference between the complexity of
the last drop mx and the last observed drop m̂x, as a function
of the t − m̂, for the Length, Algorithmic and Speed Prior. The
exact curves plotted are Equations (11), (24), and (39) from the
Appendix. Only for the Algorithmic Prior, the expectation depends
on the value b̂: as it increases, so does the expectation of a future
drop. Under the Speed Prior, no future drop is expected.

where the closeness is of order O(C(P )+lognP ). Theorem
20 of the same work proves the maximum number of strings
following this profile: There are at most

#{x|Px ≈ P} ≤ 2kP−mP (ϵ)+2ϵ+O(lognp) (3)

strings that are ϵ close to profile P . The value of mp(ϵ) is
similar to mp.

The first important observation is that for any given valid
profile P , there exist strings which have a profile close to
it. The term kP −mP represents the “random” part of the
string—the bits that cannot be further compressed into a
structural model. Crucially, the number of strings with a
given profile is dominated by this residual randomness. This
suggests that while structure is rare, strings with the same
structural profile are plentiful, differing only in their struc-
tureless noise. The value nP , i.e. the log-length associated
with profile P , contributes only logarithmically, compared
to kP and mP , to the upper bound of the number of strings.
The exact shape of the profile—beyond the values nP , kP
and mP —only plays a role via its complexity C(P ) in the
closeness to the lower bound of strings. In the next section,
we use these bounds to determine whether observing a par-
tial profile P̂x up to complexity t allows us to extrapolate
the full profile.

4. The Problem of Inductive Interestingness:
Predicting Future Progress

We now address the core of our position: if we observe a
partial profile P̂x up to complexity t, what can we infer

about its continuation? Operationally, the boundary of P̂x

corresponds to the best compression achieved so far under a
fixed compute budget (via ¶x ↔ Dx), not to full access to
the profile. Specifically, we look at the expectations for the
last drop (mx) and the ultimate complexity (kx). To formu-
late these expectations, we must assume a prior distribution
over strings, representing the “world” our learning system
inhabits. The concepts from this section are summarized in
Figure 2.

Length Prior (Brevity Prior) The simplest prior consid-
ers only string length, effectively asking for the probability
that a monkey randomly typing bits generates x. To ensure
this is a valid semi-measure, we use a prefix-free encoding
(e.g., duplicating bits and ending with 01),

L(x) = 2−(2|x|+2). (4)

Using the bounds from Equations (2) and (3), we find that
for strings sampled from L, the observed partial profile is
highly predictive:

Proposition 4.1. Let P̂x be a partial log-size vs. complexity
profile, up to complexity t, of a string x sampled from L. Let
b̂x = min{r|(t, r) ∈ P̂x} and m̂x = min{r|(r, b̂x − r) ∈
P̂x}. The expected last drop of the complete profile is

Ex∼L[mx|P̂x] ≈ m̂x + (t− m̂)2−(t−m̂x−1),

which converges to m̂ exponentially fast from above as t−m̂
increases.

Let k̂x = min{j|(t, j) ∈ P̂x} + t. The expected shortest
program computing x has length

Ex∼L[kx|P̂x] ≈ k̂x − 2−(t−m̂x−1),

which approaches k̂ exponentially fast from below as t−m̂x

increases.

The proof can be found in Appendix A.1. Before we discuss
the implications, we look at two more reasonable priors over
strings.

Algorithmic Prior We can explain the Algorithmic or
Solomonoff prior (Solomonoff, 1964) in similar terms as
the length prior. But instead of the monkey typing the string
directly, we now take the probability of the monkey typing
a program that, when run on a prefix Turing machine U ,
outputs x. The Algorithmic prior is

M(x) =
∑

p:U(p)=x

2−|p|. (5)

This prior prefers algorithmically simple strings (ones with
a short description length) as opposed to the Length Prior,
which prefers short strings.
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Proposition 4.2. For x ∼ M , the expected last drop is

Ex∼M [mx|P̂x] ≈ m̂x + t(k̂ − t)2−(t−m̂x+1).

The expected shortest program computing x has length

Ex∼M [kx|P̂x] ≈ k̂x − (k̂x − k̂ + t

2
)(k̂ − t)2−(t−m̂x+1).

For the proof, please see Appendix A.2. The convergence
here is slightly slower than the Length Prior. Because M
values simplicity, it allows for the possibility that a signif-
icantly more compressed program exists just beyond our
current computational horizon, especially if recent progress
was made.

Speed Prior To address the uncomputability of M , the
Speed Prior S(x) (Schmidhuber, 2002) penalizes both pro-
gram length and runtime. We write p →i x iff it takes 2i−|p|

steps for program p to compute output x. The speed prior
the is defined as

S(x) =

∞∑
i=1

∑
p→ix

2−(i+|p|). (6)

It is closely related to Levin Complexity Kt(x) = min{|p|+
log time(p) : U(p) = x} (Levin, 1984).

Proposition 4.3. For x ∼ S and sufficiently large t,
Ex∼S [mx|P̂x] = m̂x and Ex∼S [kx|P̂x] = k̂x.

The proof can be found in Appendix A.3. The Speed Prior
is the most “conservative”. Because it heavily penalizes
runtime, it assumes that if a faster way to compress the
string existed, it would have been found already. This prior
essentially treats the current frontier of compression as the
final one.

4.1. Discussion: The Inductive Property of
Interestingness

Using Equation (1) to transform the above results from Px

profiles to the compression against effort profile Dx, we
see that under standard priors, the “Inductive Property of
Interestingness” holds a specific mathematical form: past
compression progress can be an indicator of future progress,
but only if that progress is recent relative to the computa-
tional effort expended. As shown in Figure 3, if the gap
t− m̂ is small, there is an expectation for future drops, at
least for the Length and Algorithmic Prior. This may justify
investing resources into objects that have recently yielded
insight. Conversely, if a large computational gap exists with-
out progress, the probability of a future “aha!” moment
vanishes exponentially. Note, however, that this does not
mean that it impossible: as mentioned in Section 3.3, all

valid profile shapes are closely followed by some strings.
They are just rare under the priors we investigated.

A critical caveat of the Px ↔ Dx correspondence is its
use of the Busy Beaver function (BB). Because BB grows
faster than any computable function, the runtimes discussed
here are physically unrealizable. However, BB serves a vi-
tal theoretical role: it abstracts away machine dependence,
ensuring these results reflect the intrinsic algorithmic na-
ture of the objects rather than the specifics of a reference
computer. This machine independence is important, since
there cannot be any particular “most basic” or “most uni-
versal” computer (Müller, 2010). While these findings are
theoretical, they provide some conceptual grounding. They
suggest that “interestingness” can be a principled heuristic
for navigating the space of computable objects. To bridge
this to more practical scenarios, we may have to move from
these universal priors to more specific, “scale-free” priors
that characterize our structured reality.

Alternative View: Inductive interestingness is limited,
we should care about content over curves.
A valid critique of the inductive property of interesting-
ness is its apparent disregard for content. One might
argue that a system should not predict future progress
based on the shape of a complexity profile, but rather
on the semantic nature of the object itself. From this
perspective, an agent can recognize a task as interest-
ing because it identifies familiar motifs—physics-like
patterns, linguistic structures, or causal hierarchies—
which tend to yield to further analysis.
We can make the argument, however, that taking into
account the content is analogous to choosing what kind
of prior to use. To an agent with no domain knowledge,
the curve is the only universal signal available. But
as a system matures, it develops “meta-compression”
models—essentially domain-specific priors. These
models allow the agent to classify strings into differ-
ent “structural families.” For instance, a string known
to contain large amounts of random noise can prompt
a prior algorithmically favoring objects that plateau
early, while a string representing a mathematical proof
might elicit a prior that favors deep objects and steady
progress over many drops.

5. Inverting the Problem: Priors for
Open-Endedness

In the previous sections, we analyzed how fixed universal
priors affect the predictability of future progress. We now
invert this inquiry: if we take the existence of inductive
interestingness—the property that past learning progress
reliably predicts future insight—as a given, what must be

7
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true about the underlying distribution of objects?

This is a fundamental question for open-ended learning:
how must a “world” be structured to enable never-ending
progress? Our previous analysis of universal priors sug-
gests a somewhat limited memory; the probability of future
progress was largely determined by the recency of the last
drop. However, in structured domains, we intuitively expect
that the entire history of progress matters. We do not expect
long, steady sequences of discovery to terminate abruptly.

Scale-Free Emergence This property of sustained,
multi-level learnability can be characterized as scale-
free (Barabási & Albert, 1999) emergence. In algorithmic
terms, drops in the Px profile represent transitions between
different levels of description or emergence (Bédard & Berg-
eron, 2022). If an object exhibits scale-free emergence, its
profile contains a steady continuation of such drops across
many orders of magnitude of complexity. Natural phenom-
ena, such as biological systems or weather and climate,
appear to possess this property: they provide an almost end-
less well of regularities where each discovery uncovers a
new layer of puzzles. Also synthetic artifacts with similar
characteristics exist: for example certain fractals like the
Mandelbrot set, or cellular automata like Conway’s Game of
Life. For such objects, we would expect via the Px ↔ Dx

correspondence that past compression progress is a robust
indicator of future learnability. While Jansma & Hoel (2025)
have shown that such objects exhibiting causal contributions
which are spread out across many levels of coarse-graining
can be engineered, it remains a challenge to formally define
the conditions required for a prior to prefer these scale-free
structures.

Synthetic Data This brings us to a warning for modern AI
development. If we assume that the real world is scale-free,
our reliance on inductive interestingness as a heuristic is
justified. However, we have no such guarantee for synthetic
data. If the generated artifacts lack the depth found in nat-
ural objects, they may exhibit “post-hoc” interestingness,
yielding some initial learning progress, without possessing
any further prospective potential. In such cases, filtering
for interestingness becomes a shallow exercise. Without
scale-free structure in our generation phase, the open-ended
learning cycle risks collapsing into a regime of diminishing
returns, where the system fails to learn fundamental new
insights.

The science of complex systems investigates exactly these
conditions of emergence. It assesses the circumstances
which lead to new and different (Anderson, 1972) phenom-
ena that manifest at many scales. We believe that bridging
complexity science with algorithmic information theory is
a promising path toward a principled roadmap for truly au-
tonomous, open-ended systems.

6. Conclusion & Call To Action
In this position paper, we have argued that interestingness
is a necessary algorithmic heuristic for autonomous open-
ended intelligence. By formalizing interestingness as a
prospective assessment of future compression progress, we
have grounded the concept in the rigorous framework of
Algorithmic Information Theory. Our analysis of priors
over computable objects—Length, Algorithmic, and Speed—
reveals that the “inductive property of interestingness” is
theoretically viable: past compression progress can indeed
signal the potential for future discovery. However, this
signal is highly sensitive to the nature of the underlying
prior and the recency of the progress.

We believe that moving beyond human-in-the-loop curricula
requires efforts in at least two directions:

(1) Introspective Assessment Current machine learning
objectives focus almost exclusively on minimizing post-
hoc loss. To achieve autonomy, we must develop intro-
spective models capable of predicting their own learning
progress. This requires architectures that do not just com-
press data, but explicitly model their own “compression
frontier”—identifying where an increase in computational
effort is likely to yield the highest gain. In the context of
modern LLMs, this frontier is increasingly defined by test-
time compute and Chain-of-Thought reasoning steps. An
autonomous agent must have the ability to decide whether
an object is boring (meaning additional runtime will not
yield further compression) or interesting (meaning it holds
the potential for a complexity drop given more reasoning
tokens). Crucially, the exact nature of this computational
effort requires a more rigorous taxonomy. Whether defined
by longer recurrence, increased thinking steps, additional
gradient descent iterations, or expanded model capacity, the
underlying algorithmic relationship between these diverse
resources remains a vital open question for future research.

(2) Engineering Scale-Free Environments If the gener-
ation phase of an open-ended system produces “shallow”
synthetic data, the learning phase will inevitably plateau.
We must uncover the fundamental principles for generat-
ing scale-free artifacts—be they problems, environments,
or static datasets—that exhibit emergence across multiple
orders of magnitude. Understanding the computational pro-
cesses that yield these “endless wells of insight” is essential
if we are to avoid the trap of model collapse and ensure
continued progress in self-improving systems.

By shifting our focus from pure learning to the principled
selection of what to learn, we can begin to build systems
that do not merely solve the tasks we give them, but au-
tonomously seek to discover the richness of the universe
they inhabit.
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A. Mathematical Proofs
From Equations (2) and (3), we learn that the number of strings with a profile close to the given profile P is

2kP−mP+O(lognP ). (7)

Here, we set ϵ to be a small constant value, which also justifies replacing mP (ϵ), as defined in Vereshchagin & Shen (2016)
for technicalities of their proof, with mP .

A.1. Proof of Proposition 4.1 (Length Prior)

Proof. Equation 7 allows us to quantify how many strings with a partial profile P̂ up to complexity t characterized by

b̂ = min{r|(t, r) ∈ P̂},

m̂ = min{r|(r, b̂− r) ∈ P̂},

k̂ = min{j|(t, j) ∈ P̂}+ t, and

n̂ = min{t|(0, t) ∈ P̂},

with 0 < m̂ ≤ t ≤ k̂ ≤ n̂. There are

NL = 2k̂−m̂+O(log n̂) +

k̂∑
m=t+1

k̂∑
k=m

2k−m+O(log n̂) (8)

such strings. The first term accounts for the number of strings with a profile where the observed drop at m̂ remains the
last. The two nested sums account for all strings where the last drop is after the observed partial profile P̂ . The outer sum
enumerates the position of the drops along the complexity axis, the inner sum the size of the drop along the log-size axis.

Since the length n̂ is fixed by the partial profile P̂ , the prior Length Prior L(x) from Equation 4 is constant for all strings
following P̂ . To compute the expected values, we calculate the sum of the characteristic values m and k weighted by the
counts of strings possessing those values:

ML = m̂2k̂−m̂+O(log n̂) +

k̂∑
m=t+1

k̂∑
k=m

m2k−m+O(log n̂) (9)

KL = k̂2k̂−m̂+O(log n̂) +

k̂∑
m=t+1

k̂∑
k=m

k2k−m+O(log n̂) (10)

The expected values are defined as the ratios of these weighted sums to the total count N :

Ex∼L[mx | P̂x] =
ML

NL
, (11)

Ex∼L[kx | P̂x] =
KL

NL
. (12)

To analyze the behavior of these expectations, we first simplify the nested sums. Let us simplify the notation by treating the
logarithmic term O(log n̂) as a bounded multiplicative factor C ≈ n̂O(1), noting that it effectively cancels in the ratio of
expectations for large t. The asymptotic behavior is driven by the exponential terms.

We evaluate the inner summation over k as a geometric series. Let Sinner =
∑k̂

k=m 2k−m. By substituting j = k −m, we
obtain:

Sinner =

k̂−m∑
j=0

2j = 2k̂−m+1 − 1. (13)

12



Position: Interestingness is an Inductive Heuristic for Future Compression Progress

Substituting this back into the expression for NL, the total count is:

NL ≈ 2k̂−m̂ +

k̂∑
m=t+1

(
2k̂−m+1 − 1

)
. (14)

The sum
∑k̂

m=t+1 2
k̂−m+1 is a geometric series dominated by its first term (where m = t+ 1). Thus, for t < k̂, the total

count scales as:
NL ≈ 2k̂−m̂ + 2k̂−t+1. (15)

We observe two regimes. If the partial profile has already identified a significant drop such that m̂ ≪ t, the first term 2k̂−m̂

dominates. This represents the strings that follow the observed drop at m̂. The second term represents the “tail” of strings
that might have a drop later than t.

We now derive the numerator ML. Splitting the sum similarly gives:

ML ≈ m̂2k̂−m̂ +

k̂∑
m=t+1

m2k̂−m+1. (16)

The sum in the numerator is dominated by the term at m = t+1, contributing approximately (t+1)2k̂−t+1. The expectation
is the ratio ML/NL:

E[m] ≈ m̂2k̂−m̂ + t2k̂−t+1

2k̂−m̂ + 2k̂−t+1
=

m̂+ t2m̂−t+1

1 + 2m̂−t+1
. (17)

Using the approximation A+B
1+C ≈ A+B −AC for small C, and assuming t > m̂:

E[m] ≈ m̂+ (t− m̂)2−(t−m̂−1). (18)

As t increases, the term (t− m̂)2−(t−m̂) vanishes exponentially. Since t > m̂, the residual term is positive. Thus, E[m]
converges to m̂ from above.

For the complexity expectation E[k], we evaluate the weighted inner sum
∑k̂

k=m k2k−m. Using the identity
∑X

j=0(m+

j)2j = (m+X − 1)2X+1 + 2−m, with X = k̂ −m, the dominant term is roughly (k̂ − 1)2k̂−m+1. Summing this over
m from t+ 1 yields a tail contribution proportional to (k̂ − 1)2k̂−t+1. The expectation becomes:

E[k] ≈ k̂2k̂−m̂ + (k̂ − 1)2k̂−t+1

2k̂−m̂ + 2k̂−t+1
. (19)

Simplifying the fraction by dividing by 2k̂−m̂:

E[k] ≈ k̂ + (k̂ − 1)2m̂−t+1

1 + 2m̂−t+1
≈ k̂ − 2−(t−m̂−1). (20)

The expectation E[k] converges to k̂ exponentially fast as t grows, approaching from below.

A.2. Proof of Proposition 4.2 (Algorithmic Prior)

Proof. For the Algorithmic Prior M(x), as defined in Equation 5, the probability of a string depends on its complexity k
instead of its length. That means instead of simply counting strings, we need a normalization constant where we multiply
the number of strings per profile with the probability associated with the profile:

NM = 2−k̂2k̂−m̂+O(log n̂) +

k̂∑
m=t+1

k̂∑
k=m

2−k2k−m+O(log n̂) = 2−m̂+O(log n̂) +

k̂∑
m=t+1

k̂∑
k=m

2−m+O(log n̂) (21)
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The corresponding weighted sums are

MM = m̂2−m̂+O(log n̂) +

k̂∑
m=t+1

k̂∑
k=m

m2−m+O(log n̂) (22)

KM = k̂2−m̂+O(log n̂) +

k̂∑
m=t+1

k̂∑
k=m

k2−m+O(log n̂). (23)

We can calculate the expectations the same way:

Ex∼M [mx | P̂x] =
MM

NM
, (24)

Ex∼M [kx | P̂x] =
KM

NM
. (25)

We proceed by simplifying the nested sums. As before, we treat O(log n̂) as a negligible multiplicative factor in the limit.

A key difference from the Length Prior is the behavior of the inner sums. The probability weight 2−k cancels the volume
factor 2k, transforming the inner geometric series into arithmetic sums.

For the normalization constant NM , the inner sum is simply a count of the integers k in the interval [m, k̂]:

SN =

k̂∑
k=m

1 = k̂ −m+ 1. (26)

Substituting this into the expression for NM :

NM ≈ 2−m̂ +

k̂∑
m=t+1

(k̂ −m+ 1)2−m. (27)

The sum over m is of the form
∑

P (m)2−m, where P (m) is linear. This series is dominated by the first term where
m = t+ 1. Thus, the “tail” contribution scales approximately as (k̂ − t)2−(t+1). Comparing the main term (where the drop
is at m̂) to the tail:

NM ≈ 2−m̂ + (k̂ − t)2−(t+1). (28)

Next, we derive the expectation for the drop size m. The numerator MM involves the same inner sum SN , but weighted by
m:

MM ≈ m̂2−m̂ +

k̂∑
m=t+1

m(k̂ −m+ 1)2−m. (29)

The tail sum is again dominated by the term at m = t+ 1, contributing roughly (t+ 1)(k̂ − t)2−(t+1). The expectation is:

E[m] ≈ m̂2−m̂ + t(k̂ − t)2−(t+1)

2−m̂ + (k̂ − t)2−(t+1)
. (30)

For t > m̂, the 2−m̂ term dominates. Factorizing 2−m̂ reveals the convergence:

E[m] ≈ m̂+ t(k̂ − t)2−(t−m̂+1). (31)

Since the tail term adds positive contributions (where m > t > m̂), E[m] converges to m̂ from above with exponential
speed O(2−(t−m̂)).
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Finally, for the complexity E[k], we evaluate the inner sum of the numerator KM :

SK =

k̂∑
k=m

k =
(k̂ +m)(k̂ −m+ 1)

2
. (32)

This is the sum of an arithmetic progression. For the tail terms where m ≈ t, the average value of k is approximately k̂+t
2 .

The numerator KM becomes:

KM ≈ k̂2−m̂ +

k̂∑
m=t+1

(k̂ +m)(k̂ −m+ 1)

2
2−m. (33)

The tail contribution is dominated by m = t+ 1, scaling as k̂+t
2 (k̂ − t)2−(t+1). The expectation is:

E[k] ≈
k̂2−m̂ + k̂+t

2 (k̂ − t)2−(t+1)

2−m̂ + (k̂ − t)2−(t+1)
. (34)

This can be viewed as a weighted average between the main profile (value k̂) and the tail profiles (average value ≈ k̂+t
2 ).

Since t < k̂, the tail value k̂+t
2 is strictly less than k̂. Therefore, the tail drags the average down.

E[k] ≈ k̂ − (k̂ − k̂ + t

2
)(k̂ − t)2−(t−m̂+1). (35)

Thus, E[k] converges to k̂ exponentially fast from below.

A.3. Proof of Proposition 4.3 (Speed Prior)

Proof. The Speed Prior S(x) from Equation 6 assigns long running programs a lower probability. The outer sum enumerates
computational phases with exponentially growing computational budgets. Programs that compute x in a later phase, i.e.
after a longer runtime, have exponentially lower probability.

The transform described by Equation (1) allows us to convert set complexity values m to program runtimes via the busy
beaver function BB(x). Due to the extremely fast growing nature of BB(x), according to the speed prior, the probabilities of
descriptions with lower set complexity (left on the Px profile) completely dominate description with higher set complexity
(right on the Px profile). This means we can ignore tail sums and our normalization constants and weighted sums are

NS = 2k̂−m̂+O(log n̂) (36)

MS = m̂2k̂−m̂+O(log n̂) (37)

KS = k̂2k̂−m̂+O(log n̂), (38)

leading directly to the expectations

E[m] =
MS

NS
= m̂ and (39)

E[k] =
JS
NS

= k̂. (40)

15


